Learn More
The utility of acoustic radiation force impulse (ARFI) imaging for real-time visualization of abdominal malignancies was investigated. Nine patients presenting with suspicious masses in the liver (n = 7) or kidney (n = 2) underwent combined sonography/ARFI imaging. Images were acquired of a total of 12 tumors in the nine patients. In all cases, boundary(More)
The real-time application of acoustic radiation force impulse (ARFI) imaging requires both short acquisition times for a single ARFI image and repeated acquisition of these frames. Due to the high energy of pulses required to generate appreciable radiation force, however, repeated acquisitions could result in substantial transducer face and tissue heating.(More)
Acoustic radiation force impulse (ARFI) imaging has been demonstrated to be capable of visualizing variations in local stiffness within soft tissue. Recent advances in ARFI beam sequencing and parallel imaging have shortened acquisition times and lessened transducer heating to a point where ARFI acquisitions can be executed at high frame rates on(More)
The initial results from clinical trials investigating the utility of acoustic radiation force impulse (ARFI) imaging for use with radio-frequency ablation (RFA) procedures in the liver are presented. To date, data have been collected from 6 RFA procedures in 5 unique patients. Large displacement contrast was observed in ARFI images of both pre-ablation(More)
Previous studies have established the feasibility of monitoring radiofrequency (RF) ablation procedures with acoustic radiation force impulse (ARFI) imaging. However, questions remained regarding the utility of the technique in clinically realistic scenarios and at scanning depths associated with abdominal imaging in adults. We address several of these(More)
Intracardiac echocardiography (ICE) has been demonstrated to be an effective imaging modality for the guidance of several cardiac procedures, including radiofrequency ablation (RFA). However, assessing lesion size during the ablation with conventional ultrasound has been limited, as the associated changes within the B-mode images often are subtle. Acoustic(More)
Acoustic radiation force impulse (ARFI) imaging has been demonstrated to be capable of visualizing changes in local myocardial stiffness through a normal cardiac cycle. As a beating heart involves rapidly-moving tissue with cyclically-varying myocardial stiffness, it is desirable to form images with high frame rates and minimize susceptibility to motion(More)
INTRODUCTION Lesion placement and transmurality are critical factors in the success of cardiac transcatheter radiofrequency ablation (RFA) treatments for supraventricular arrhythmias. This study investigated the capabilities of catheter transducer based acoustic radiation force impulse (ARFI) ultrasound imaging for quantifying ablation lesion dimensions. (More)
Shear wave elasticity imaging (SWEI) was employed to track acoustic radiation force impulse (ARFI)-induced shear waves in the mid-myocardium of the left ventricular free wall (LVFW) of a beating canine heart. Shear waves were generated and tracked with a linear ultrasound transducer that was placed directly on the exposed epicardium. Acquisition was(More)