Stephen Holler

Learn More
Biosensors based on the shift of whispering-gallery modes in microspheres accompanying protein adsorption are described by use of a perturbation theory. For random spatial adsorption, theory predicts that the shift should be inversely proportional to microsphere radius R and proportional to protein surface density and excess polarizability. Measurements are(More)
Recently we reported the detection and sizing of the smallest RNA virus MS2 with a mass of 6 ag from the resonance frequency shift of a whispering gallery mode-nanoshell hybrid resonator (WGM-h) upon adsorption on the nanoshell and anticipated that single protein above 0.4 ag should be detectable but with considerably smaller signals. Here, we report the(More)
Individual nanoparticles in aqueous solution are observed to be attracted to and orbit within the evanescent sensing ring of a Whispering Gallery Mode micro-sensor with only microwatts of driving power. This Carousel trap, caused by attractive optical gradient forces, interfacial interactions, and the circulating momentum flux, considerably enhances the(More)
Thermo-optic and reactive mechanisms for label-free sensing of bio-particles are compared theoretically for Whispering Gallery Mode (WGM) resonators (sphere, toroid) formed from silica and stimulated into a first order equatorial mode. Although it has been expected that a thermo-optic mechanism should "greatly enhance" wavelength shift signals [A.M. Armani(More)
We measured fluorescence from spherical water droplets containing tryptophan and from aggregates of bacterial cells and compared these measurements with calculations of fluorescence of dielectric spheres. The measured dependence of fluorescence on size, from both droplets and dry-particle aggregates of bacteria, is proportional to the absorption cross(More)
Two-dimensional angular optical scattering (TAOS) patterns from clusters of polystyrene latex spheres are measured in the near-forward and near-backward directions. In both cases, the scattering pattern contains a rich and complicated structure that is the result of the interaction and interference of light among the primary particles. Calculations are made(More)
Related Articles Single particle demultiplexer based on domain wall conduits Appl. Phys. Lett. 101, 142405 (2012) Studies on CdS nanoparticles prepared in DNA and bovine serum albumin based biotemplates J. Appl. Phys. 112, 064704 (2012) Effect of molecule-particle binding on the reduction in the mixed-frequency alternating current magnetic susceptibility of(More)
Two-dimensional angular optical scattering (TAOS) is recorded for several particle shapes and configurations. A lens is used to collect a large solid angle of the light and transform the angular profile into a planar distribution according to the Abbé sine condition. Qualitative agreement is found between experiment and theory for the TAOS from spheroids(More)
Reproducible fluorescence spectra of individual 2- to 5-microm -diameter biological aerosol particles excited with a single shot from a Q -switched laser (266 or 351 nm) have been obtained with highly improved signal-to-noise ratios. Critical to the advance are crossed diode-laser trigger beams, which precisely define the sample volume, and a reflecting(More)
Measured fluorescence from single-particle clusters of dye-doped polystyrene microspheres, dried nonspherical particles of tryptophan, and single polystyrene microspheres is enhanced in the backward direction (180 degrees from the incident laser). This enhancement (a factor of 2-3 compared to 90 degrees), which can be interpreted as a consequence of the(More)