Stephen Hocker

Learn More
We present an effective atomic interaction potential for crystalline α-Al(2)O(3) generated by the program potfit. The Wolf direct, pairwise summation method with spherical truncation is used for electrostatic interactions. The polarizability of oxygen atoms is included by use of the Tangney-Scandolo interatomic force field approach. The potential is(More)
Aluminium diffusion in decagonal Al-Ni-Co and Al-Cu-Co quasicrystals is investigated by molecular dynamics simulations. Results obtained with newly developed EAM potentials are compared to previous work with effective pair potentials [Phys. Rev. Lett. 93, 075901 (2004)]. With both types of potential, strong aluminium diffusion is observed above two thirds(More)
An introduction is presented to numerical methods, by which the behavior of complex metallic alloys can be simulated. We primarily consider the molecular dynamics (MD) technique as implemented in our software package IMD, where Newton's equations of motion are solved for all atoms in a solid. After a short discourse on integration algorithms, some possible(More)
Aluminium is the majority element in many quasicrystals and expected to be the most mobile element, but its diffusion properties are hardly accessible to experiment. Here we investigate aluminum diffusion in decagonal Al-Ni-Co and Al-Cu-Co quasicrystals by molecular dynamics simulations, using classical effective pair potentials. Above two-thirds of the(More)
  • 1