Stephen H. Prior

Learn More
Human angiogenin (ANG), the first member of the angiogenin family (from the pancreatic ribonuclease A superfamily) to be identified, is an angiogenic factor that induces neovascularization. It has received much attention due to its involvement in the growth of tumors and its elevated expression level in pancreatic and several other cancers. Recently the(More)
Synthetic peptides that specifically bind nuclear hormone receptors offer an alternative approach to small molecules for the modulation of receptor signaling and subsequent gene expression. Here we describe the design of a series of novel stapled peptides that bind the coactivator peptide site of estrogen receptors. Using a number of biophysical techniques,(More)
Matrix metalloproteinase-1 (MMP-1) is an instigator of collagenolysis, the catabolism of triple helical collagen. Previous studies have implicated its hemopexin (HPX) domain in binding and possibly destabilizing the collagen substrate in preparation for hydrolysis of the polypeptide backbone by the catalytic (CAT) domain. Here, we use biophysical methods to(More)
The widespread and functionally varied members of the ribonuclease A (RNase A) superfamily provide an excellent opportunity to study evolutionary forces at work on a conserved protein scaffold. Representatives from the zebrafish are of particular interest as the evolutionary distance from non-ichthyic homologues is large. We conducted an exhaustive survey(More)
A domain needed for the catalytic efficiency of an enzyme model of simple processivity and domain-domain interactions has been characterized by NMR. This domain 4 from phosphomannomutase/phosphoglucomutase (PMM/PGM) closes upon glucose phosphate and mannose phosphate ligands in the active site, and can modestly reconstitute activity of enzyme truncated to(More)
Tapasin edits the peptide repertoire presented to CD8(+) T cells by favoring loading of slow off-rate peptides on MHC I molecules. To investigate the role of tapasin on T cell immunodominance we used poxvirus viral vectors expressing a polytope of lymphocytic choriomeningitis virus epitopes with different off-rates. In tapasin-deficient mice, responses to(More)
Matrix metalloproteinases (MMPs) regulate tissue remodelling, inflammation and disease progression. Some soluble MMPs are inexplicably active near cell surfaces. Here we demonstrate the binding of MMP-12 directly to bilayers and cellular membranes using paramagnetic NMR and fluorescence. Opposing sides of the catalytic domain engage spin-labelled membrane(More)
Matrix metalloproteinase-7 (MMP-7) sheds signaling proteins from cell surfaces to activate bacterial killing, wound healing, and tumorigenesis. The mechanism targeting soluble MMP-7 to membranes has been investigated. Nuclear magnetic resonance structures of the zymogen, free and bound to membrane mimics without and with anionic lipid, reveal peripheral(More)
Heparan sulfate proteoglycans activate the matrix metalloproteinase-7 zymogen (proMMP-7) and recruit it in order to shed proteins from cell surfaces. This occurs in uterine and mammary epithelia, bacterial killing, lung healing, and tumor cell signaling. Basic tracks on proMMP-7 recognize polyanionic heparin, according to nuclear magnetic resonance and(More)
Collagenolysis is essential in extracellular matrix homeostasis, but its structural basis has long been shrouded in mystery. We have developed a novel docking strategy guided by paramagnetic NMR that positions a triple-helical collagen V mimic (synthesized with nitroxide spin labels) in the active site of the catalytic domain of matrix metalloproteinase-12(More)
  • 1