Stephen H. Little

Learn More
We present the first system for measurement of proximal isovelocity surface area (PISA) on a 3D ultrasound acquisition using modified ultrasound hardware, volumetric image segmentation and a simple efficient workflow. Accurate measurement of the PISA in 3D flow through a valve is an emerging method for quantitatively assessing cardiac valve regurgitation(More)
Surgeons need a robust interventional system capable of providing reliable, real-time information regarding the position and orientation of the surgical targets and tools to compensate for the lack of direct vision and to enhance manipulation of intracardiac targets during minimally-invasive, off-pump cardiac interventions. In this paper, we describe a(More)
As the first section of a multi-part review series, this section provides an overview of the ongoing research and development aimed at fabricating novel heart valve replacements beyond what is currently available for patients. Here we discuss heart valve replacement options that involve a biological component or process for creation, either in vitro or in(More)
In this final portion of an extensive review of heart valve engineering, we focus on the computational methods and experimental studies related to heart valves. The discussion begins with a thorough review of computational modeling and the governing equations of fluid and structural interaction. We then move onto multiscale and disease specific modeling.(More)
In this portion of an extensive review of heart valve engineering, we focus on the current and emerging technologies and techniques to repair or replace the mitral valve. We begin with a discussion of the currently available mechanical and bioprosthetic mitral valves followed by the rationale and limitations of current surgical mitral annuloplasty methods;(More)
The engineering of technologies for heart valve replacement (i.e., heart valve engineering) is an exciting and evolving field. Since the first valve replacement, technology has progressed by leaps and bounds. Innovations emerge frequently and supply patients and physicians with new, increasingly efficacious and less invasive treatment options. As much as(More)
—3D color Doppler echocardiography has recently been employed to evaluate 3D proximal isovelocity surface area (PISA) and vena contracta (VC) area measures of regurgitant valve severity. Computational fluid dynamics (CFD) modeling may provide insight into the strengths and limitations of emerging 3D color Doppler applications for the quantification of(More)
As catheter-based structural heart interventions become increasingly complex, the ability to effectively model patient-specific valve geometry as well as the potential interaction of an implanted device within that geometry will become increasingly important. Our aim with this investigation was to combine the technologies of high-spatial resolution cardiac(More)