Stephen H. Little

Boyce Griffith4
Frank Baaijens4
S. Hamed Alavi4
4Boyce Griffith
4Frank Baaijens
4S. Hamed Alavi
Learn More
Surgeons need a robust interventional system capable of providing reliable, real-time information regarding the position and orientation of the surgical targets and tools to compensate for the lack of direct vision and to enhance manipulation of intracardiac targets during minimally-invasive, off-pump cardiac interventions. In this paper, we describe a(More)
We present the first system for measurement of proximal isovelocity surface area (PISA) on a 3D ultrasound acquisition using modified ultrasound hardware, volumetric image segmentation and a simple efficient workflow. Accurate measurement of the PISA in 3D flow through a valve is an emerging method for quantitatively assessing cardiac valve regurgitation(More)
As catheter-based structural heart interventions become increasingly complex, the ability to effectively model patient-specific valve geometry as well as the potential interaction of an implanted device within that geometry will become increasingly important. Our aim with this investigation was to combine the technologies of high-spatial resolution cardiac(More)
In this final portion of an extensive review of heart valve engineering, we focus on the computational methods and experimental studies related to heart valves. The discussion begins with a thorough review of computational modeling and the governing equations of fluid and structural interaction. We then move onto multiscale and disease specific modeling.(More)
Mitral valve regurgitation is a challenging clinical condition that is frequent, highly varied, and poorly understood. While the causes of mitral regurgitation are multifactorial, how the hemodynamics of regurgitation impact valve tissue remodeling is an understudied phenomenon. We employed a pseudo-physiological flow loop capable of long-term organ culture(More)
As the first section of a multi-part review series, this section provides an overview of the ongoing research and development aimed at fabricating novel heart valve replacements beyond what is currently available for patients. Here we discuss heart valve replacement options that involve a biological component or process for creation, either in vitro or in(More)