Learn More
Recent studies suggest that thousands of genes may contribute to breast cancer pathophysiologies when deregulated by genomic or epigenomic events. Here, we describe a model "system" to appraise the functional contributions of these genes to breast cancer subsets. In general, the recurrent genomic and transcriptional characteristics of 51 breast cancer cell(More)
We describe a survey of genetic changes by comparative genomic hybridization (CGH) in 11 human breast cancer cell lines recently established in our laboratory. The most common gains took place at 8q (73%), 1 q (64%), 7q (64%), 3q (45%) and 7p (45%), whereas losses were most frequent at Xp (54%), 8p (45%), 18q (45%) and Xq (45%). Many of the cell lines(More)
Breast cancer cell lines provide a useful starting point for the discovery and functional analysis of genes involved in breast cancer. Here, we studied 38 established breast cancer cell lines by comparative genomic hybridization (CGH) to determine recurrent genetic alterations and the extent to which these cell lines resemble uncultured tumors. The(More)
Breast cancers show a lack of response to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), despite 30% of tumors expressing EGFR. The mechanism of this resistance is unknown; however, we have recently shown that Met kinase activity compensates for loss of EGFR kinase activity in cell culture models. Met has been implicated in the(More)
With the goal of identifying genes that have an expression pattern that can facilitate the diagnosis of primary breast cancers (BCs) as well as the discovery of novel drug leads for BC treatment, we used cDNA hybrid-ization arrays to analyze the gene expression profiles (GEPs) of nine weakly invasive and four highly invasive BC cell lines. Differences in(More)
Earlier, mapping of the 9p23-24 amplicon in esophageal cancer cell lines led us to the positional cloning of gene amplified in squamous cell carcinoma 1 (GASC1), which encodes a nuclear protein with a Jumonji C domain that catalyzes lysine (K) demethylation of histones. However, the transforming roles of GASC1 in breast cancer remain to be determined. In(More)
Signal transducers and activators of transcription (STATs) were originally identified as key components of signaling pathways involved in mediating responses to IFNs. Previous studies showed that the Src oncoprotein constitutively activates one STAT family member, Stat3. In this study, we investigated STAT activation in a panel of rodent fibroblast cell(More)
The 8p11-p12 genomic region is amplified in 15% of breast cancers and harbors several candidate oncogenes. However, functional evidence for a transforming role for these genes is lacking. We identified 21 genes from this region as potential oncogenes based on statistical association between copy number and expression. We further showed that three of these(More)
Amplification and overexpression of ERBB-2 in human breast cancer is thought to play a significant role in the progression of the disease; however, its precise role in the aetiology of altered phenotypes associated with human breast cancer is unknown. We have previously shown that exogenous overexpression of ERBB-2 conferred growth factor independence on(More)