Stephen E. Boggs

  • Citations Per Year
Learn More
We report on a 10 ks simultaneous Chandra/HETG−NuSTAR observation of the Bursting Pulsar, GRO J1744−28, during its third detected outburst since discovery and after nearly 18 years of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also(More)
Broad X-ray emission lines from neutral and partially ionized iron observed in active galaxies have been interpreted as fluorescence produced by the reflection of hard X-rays off the inner edge of an accretion disk. In this model, line broadening and distortion result from rapid rotation and relativistic effects near the black hole, the line shape being(More)
Asymmetry is required by most numerical simulations of stellar core-collapse explosions, but the form it takes differs significantly among models. The spatial distribution of radioactive (44)Ti, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surrounding medium, directly(More)
The Galactic diffuse soft gamma-ray (30-800 keV) emission has been measured from the Galactic Center by the HIREGS balloon-borne germanium spectrometer to determine the spectral characteristics and origin of the emission. The resulting Galactic diffuse continuum is found to agree well with a single power-law (plus positronium) over the entire energy range,(More)
We present the results of a 55ks NuSTAR observation of the core of the Coma Cluster. The global spectrum can be explained by thermal gas emission, with a conservative 90% upper limit to non-thermal inverse Compton (IC) emission of 5.1×10−12 erg cm−2 s−1 in a 12′ × 12′ field of view. The brightness of the thermal component in this central region does not(More)
In core-collapse supernovae, titanium-44 ((44)Ti) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of (44)Ti(More)
The light curves of Type Ia Supernovae (SN Ia) are powered by gamma-rays emitted by the decay of radioactive elements such as Ni and its decay products. These gamma-rays are downscattered, absorbed, and eventually reprocessed into the optical emission which makes up the bulk of all supernova observations. Detection of the gamma-rays that escape the(More)
We report NuSTAR observations of NuSTAR J033202–2746.8, a heavily obscured, radio-loud quasar detected in the Extended Chandra Deep Field-South, the deepest layer of the NuSTAR extragalactic survey (∼400 ks, at its deepest). NuSTAR J033202–2746.8 is reliably detected by NuSTAR only at E > 8 keV and has a very flat spectral slope in the NuSTAR energy band (Γ(More)
The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs(More)
The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream(More)