Learn More
Individual-based assignment tests are now standard tools in molecular ecology and have several applications, including the study of dispersal. The measurement of natal dispersal is vital to understanding the ecology of many species, yet the accuracy of assignment tests in situations where natal dispersal is common remains untested in the field. We studied a(More)
Two prevailing paradigms explain the diversity of sex-determining modes in reptiles. Many researchers, particularly those who study reptiles, consider genetic and environmental sex-determining mechanisms to be fundamentally different, and that one can be demonstrated experimentally to the exclusion of the other. Other researchers, principally those who take(More)
Sex in reptiles is determined by genes on sex chromosomes or by incubation temperature. Previously these two modes were thought to be distinct, yet we show that high incubation temperatures reverse genotypic males (ZZ) to phenotypic females in a lizard with ZZ and ZW sex chromosomes. Thus, the W chromosome is not necessary for female differentiation. Sex(More)
The infraorder Gekkota is intriguing because it contains multiple chromosomal and environmental sex determination systems that vary even among closely related taxa. Here, we compare male and females karyotypes of the pink-tailed worm-lizard (Aprasia parapulchella), a small legless lizard belonging to the endemic Australian family Pygopodidae. We applied(More)
Reptiles, as the sister group to birds and mammals, are particularly valuable for comparative genomic studies among amniotes. The Australian central bearded dragon (Pogona vitticeps) is being developed as a reptilian model for such comparisons, with whole-genome sequencing near completion. The karyotype consists of 6 pairs of macrochromosomes and 10 pairs(More)
Scant genomic information from non-avian reptile sex chromosomes is available, and for only a few lizards, several snakes and one turtle species, and it represents only a small fraction of the total sex chromosome sequences in these species. We report a 352 kb of contiguous sequence from the sex chromosome of a squamate reptile, Pogona vitticeps, with a(More)
Transitions between sex determination systems have occurred in many lineages of squamates and it follows that novel sex chromosomes will also have arisen multiple times. The formation of sex chromosomes may be reinforced by inhibition of recombination and the accumulation of repetitive DNA sequences. The karyotypes of monitor lizards are known to be highly(More)
Several recent studies have produced comparative maps of genes on amniote sex chromosomes, revealing homology of gene content and arrangement across lineages as divergent as mammals and lizards. For example, the chicken Z chromosome, which shares homology with the sex chromosomes of all birds, monotremes, and a gecko, is a striking example of stability of(More)
The sex chromosomes in Sauropsida (reptiles and birds) have evolved independently many times. They show astonishing diversity in morphology ranging from cryptic to highly differentiated sex chromosomes with male (XX/XY) and female heterogamety (ZZ/ZW). Comparing such diverse sex chromosome systems thus provides unparalleled opportunities to capture(More)
The effective population size (N(e)) is proportional to the loss of genetic diversity and the rate of inbreeding, and its accurate estimation is crucial for the monitoring of small populations. Here, we integrate temporal studies of the gecko Oedura reticulata, to compare genetic and demographic estimators of N(e). Because geckos have overlapping(More)