Stephen D. Erickson

Learn More
Iron-containing ferritin has been used for light harvesting and as a photocatalyst. In this study, we test the hypothesis that changing the ironmineral core composition can alter the light harvesting and photocatalytic properties of ferritin, by co-depositing iron in the presence of halides or oxo-anions. This caused the anions to be incorporated into the(More)
Ferritin is a protein nano-cage that encapsulates minerals inside an 8 nm cavity. Previous band gap measurements on the native mineral, ferrihydrite, have reported gaps as low as 1.0 eV and as high as 2.5-3.5 eV. To resolve this discrepancy we have used optical absorption spectroscopy, a well-established technique for measuring both direct and indirect band(More)
Quantum dot solar cells seek to surpass the solar energy conversion efficiencies achieved by bulk semiconductors. This new field requires a broad selection of materials to achieve its full potential. The 12 nm spherical protein ferritin can be used as a template for uniform and controlled nanocrystal growth, and to then house the nanocrystals for use in(More)
This paper investigates the comproportionation reaction of MnII with [Formula: see text] as a route for manganese oxide nanoparticle synthesis in the protein ferritin. We report that [Formula: see text] serves as the electron acceptor and reacts with MnII in the presence of apoferritin to form manganese oxide cores inside the protein shell. Manganese(More)
Permanganate-Based Synthesis of Semiconducting Metal Oxide Nanoparticles in the Protein Ferritin Cameron Olsen Department of Physics and Astronomy, BYU Bachelor of Science This thesis investigates the reactions of Mn2+ and Co2+ with permanganate as a route for manganese and cobalt oxide nanoparticle synthesis in the protein ferritin. Permanganate serves as(More)
  • 1