Learn More
The identity of the fundamental broken symmetry (if any) in the underdoped cuprates is unresolved. However, evidence has been accumulating that this state may be an unconventional density wave. Here we carry out site-specific measurements within each CuO2 unit cell, segregating the results into three separate electronic structure images containing only the(More)
We report the design and construction of piezoelectric-based apparatus for applying continuously tuneable compressive and tensile strains to test samples. It can be used across a wide temperature range, including cryogenic temperatures. The achievable strain is large, so far up to 0.23% at cryogenic temperatures. The apparatus is compact and compatible with(More)
A sensitive probe of unconventional order is its response to a symmetry-breaking field. To probe the proposed p(x) ± ip(y) topological superconducting state of Sr2RuO4, we have constructed an apparatus capable of applying both compressive and tensile strains of up to 0.23%. Strains applied along ⟨100⟩ crystallographic directions yield a strong,(More)
The quantum condensate of Cooper pairs forming a superconductor was originally conceived as being translationally invariant. In theory, however, pairs can exist with finite momentum Q, thus generating a state with a spatially modulated Cooper-pair density. Such a state has been created in ultracold (6)Li gas but never observed directly in any(More)
Theories based upon strong real space (r-space) electron-electron interactions have long predicted that unidirectional charge density modulations (CDMs) with four-unit-cell (4a0) periodicity should occur in the hole-doped cuprate Mott insulator (MI). Experimentally, however, increasing the hole density p is reported to cause the conventionally defined(More)
  • 1