Stephen Claridge

  • Citations Per Year
Learn More
The inhibitory activity of base-modified SAH analogues and the specificity of inhibiting human DNMT1 and DNMT3b2 enzymes was explored. The 6-amino group was essential while the 7-N of the adenine ring of SAH could be replaced by CH- without loss of activity against both enzymes. The introduction of small groups at the 2-position of the adenine moiety favors(More)
Potent SAH analogues with constrained homocysteine units have been designed and synthesized as inhibitors of human DNMT enzymes. The five membered (2S,4S)-4-mercaptopyrrolidine-2-carboxylic acid, in 1a, was a good replacement for homocysteine, while the corresponding six-member counterpart was less active. Further optimization of 1a, changed the selectivity(More)
A series of N-(3-fluoro-4-(2-arylthieno[3,2-b]pyridin-7-yloxy)phenyl)-2-oxo-3-phenylimidazolidine-1-carboxamides targeting c-Met and VEGFR2 tyrosine kinases was designed and synthesized. The compounds were potent against these two enzymes with IC(50) values in the low nanomolar range in vitro, possessed favorable pharmacokinetic profiles and showed high(More)
A series of N-(4-(6,7-disubstituted-quinolin-4-yloxy)-3-fluorophenyl)-2-oxo-3-phenylimidazolidine-1-carboxamides targeting c-Met and VEGFR2 tyrosine kinases was designed and synthesized. The compounds were potent against these two enzymes with IC(50) values in the low nanomolar range in vitro, possessed favorable pharmacokinetic profiles and showed high(More)
A series of thieno[3,2-b]pyridine-based inhibitors of c-Met and VEGFR2 tyrosine kinases is described. The compounds demonstrated potency with IC(50) values in the low nanomolar range in vitro while the lead compound also showed in vivo activity against various human tumor xenograft models in mice. Further exploration of this class of compounds is underway.
A family of thieno[3,2-b]pyridine based small molecule inhibitors of c-Met and VEGFR2 were designed based on lead structure 2. These compounds were shown to have IC(50) values in the low nanomolar range in vitro and were efficacious in human tumor xenograft models in mice in vivo.
Two strategies were developed toward the stereocontrolled synthesis of 8-aryl-3-hydroxy-4-amino-2,7-diisopropyloctanoic acids with predetermined stereogenic centers. This is a generic motif in a new class of potent inhibitors of the enzyme renin, exemplified by CGP-60536B. The synthesis relies on the utilization of L-pyroglutamic acid as chiron, and(More)
  • 1