Learn More
Four-way DNA intermediates, also known as Holliday junctions, are formed during homologous recombination and DNA repair, and their resolution is necessary for proper chromosome segregation. Here we identify nucleases from Saccharomyces cerevisiae and human cells that promote Holliday junction resolution, in a manner analogous to that shown by the(More)
DNA interstrand crosslinks (ICLs) are highly toxic because they block the progression of replisomes. The Fanconi Anemia (FA) proteins, encoded by genes that are mutated in FA, are important for repair of ICLs. The FA core complex catalyzes the monoubiquitination of FANCD2, and this event is essential for several steps of ICL repair. However, how(More)
The efficient repair of double-strand breaks in DNA is critical for the maintenance of genome stability and cell survival. Homologous recombination provides an efficient and faithful pathway of repair, especially in replicating cells, in which it plays a major role in tumour avoidance. Many of the enzymes that are involved in recombination have been(More)
Holliday junctions (HJs) are four-way DNA intermediates that form during homologous recombination, and their efficient resolution is essential for chromosome segregation. Here, we show that three structure-selective endonucleases, namely SLX1-SLX4, MUS81-EME1, and GEN1, define two pathways of HJ resolution in human cells. One pathway is mediated by GEN1,(More)
Individuals carrying BRCA2 mutations are predisposed to breast and ovarian cancers. Here, we show that BRCA2 plays a dual role in regulating the actions of RAD51, a protein essential for homologous recombination and DNA repair. First, interactions between RAD51 and the BRC3 or BRC4 regions of BRCA2 block nucleoprotein filament formation by RAD51.(More)
Cells defective in any of the RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) are sensitive to DNA cross-linking agents and to ionizing radiation. Because the paralogs are required for the assembly of DNA damage-induced RAD51 foci, and mutant cell lines are defective in homologous recombination and show genomic instability, their defect is thought(More)
Eukaryotic cells possess several mechanisms for repairing double-stranded breaks in DNA. One mechanism involves genetic recombination with an intact sister duplex. The recent identification of the RAD51 protein, a eukaryotic homologue of Escherichia coli RecA, represents a landmark discovery in our understanding of the key reactions in this repair pathway.(More)
Individuals affected by the autosomal recessive disorder Werner's syndrome (WS) develop many of the symptoms characteristic of premature ageing. Primary fibroblasts cultured from WS patients exhibit karyotypic abnormalities and a reduced replicative life span. The WRN gene encodes a 3'-5' DNA helicase, and is a member of the RecQ family, which also includes(More)
The faithful and complete replication of DNA is necessary for the maintenance of genome stability. It is known, however, that replication forks stall at lesions in the DNA template and need to be processed so that replication restart can occur. In fission yeast, the Mus81-Eme1 endonuclease complex (Mus81-Mms4 in Saccharomyces cerevisiae) has been implicated(More)
The efficient and timely resolution of DNA recombination intermediates is essential for bipolar chromosome segregation. Here, we show that the specialized chromosome segregation patterns of meiosis and mitosis, which require the coordination of recombination with cell-cycle progression, are achieved by regulating the timing of activation of two(More)