Learn More
In this report we describe extracellular recordings made from ON and ON-OFF directionally selective (DS) ganglion cells in the rabbit retina during perfusion with agonists and antagonists to acetylcholine (ACh), glutamate, and gamma-aminobutyric acid (GABA). Nicotinic ACh agonists strongly excited DS ganglion cell in a dose-dependent manner. Dose-response(More)
We have studied the distribution of the calcium-binding protein calbindin in the adult rabbit retina by using a commercially available antibody and immunocytochemical methods. The most heavily labeled cells are A-type horizontal cells, but B-type horizontal cells are also lightly labeled by this antibody. Among the horizontal cells, there is a mosaic of(More)
The morphology, distribution, and coverage of certain cone bipolar cell types were investigated in rabbit retina. Brief in vitro incubation of isolated rabbit retina in the fluorescent dye 4,6-diamino-2-phenylindole labeled only a few cell types in the inner nuclear layer. Intracellular injection of Lucifer Yellow into these types showed them to be(More)
The fluorescent dye 4,6-diamino-2-phenylindole (DAPI) has previously been used to label starburst amacrine cells selectively in the rabbit retina and AII amacrine cells in the cat retina. Using the rabbit retina, we show that intraocular injection of DAPI labels starburst amacrine cells as seen 1-2 days later. In contrast, after a brief in vitro incubation(More)
The retina is sensitive to light stimuli varying over more than 12 log units in intensity. It accomplishes this, in part, by switching between rod-dominated circuits designed for maximum utilization of scarce photons and cone circuits designed for greater acuity. Rod signals are integrated into the cone pathways through AII amacrine cells, which are(More)
Many neurons in the mammalian retina are coupled by means of gap junctions. Here, we show that, in rabbit retina, an antibody to connexin 36 heavily labels processes of AII amacrine cells, a critical interneuron in the rod pathway. Image analysis indicates that Cx36 is primarily located at dendritic crossings between overlapping AII amacrine cells. This(More)
Retinal bipolar cells are known to form a complex, interconnecting network through electrical synapses that are either heterologous (with amacrine cells) or homologous (with other bipolar cells). These electrical synapses can be functionally as important as chemical synapses because their distinct properties provide a different character for the network.(More)
Many cell types in the retina are coupled via gap junctions and so there is a pressing need for a potent and reversible gap junction antagonist. We screened a series of potential gap junction antagonists by evaluating their effects on dye coupling in the network of A-type horizontal cells. We evaluated the following compounds: meclofenamic acid (MFA),(More)
Nitric oxide (NO) acts as a neuronal messenger which activates soluble guanylyl cyclase (SGC) in neighboring cells and produces a wide range of physiological effects in the central nervous system (CNS). Using immunocytochemical and histochemical stains, we have characterized the NO/SGC system in the rabbit retina and to a lesser extent, in monkey retina.(More)
Observation of the spread of biotinylated or fluorescent tracers following injection into a single cell has become one of the most common methods of demonstrating the presence of gap junctions. Nevertheless, many of the fundamental features of tracer movement through gap junctions are still poorly understood. These include the relative roles of diffusion(More)