Stephen C. Lowry

Learn More
On 4 July 2005, many observatories around the world and in space observed the collision of Deep Impact with comet 9P/Tempel 1 or its aftermath. This was an unprecedented coordinated observational campaign. These data show that (i) there was new material after impact that was compositionally different from that seen before impact; (ii) the ratio of dust mass(More)
The evolution of the spin rate of Comet 9P/Tempel 1 through two perihelion passages (in 2000 and 2005) is determined from 1922 Earth-based observations taken over a period of 13 year as part of a WorldWide observing campaign and from 2888 observations taken over a period of 50 days from the Deep Impact spacecraft. We determine the following sidereal spin(More)
Radar and optical observations reveal that the continuous increase in the spin rate of near-Earth asteroid (54509) 2000 PH5 can be attributed to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, a torque due to sunlight. The change in spin rate is in reasonable agreement with theoretical predictions for the YORP acceleration of a body with the(More)
The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is believed to alter the spin states of small bodies in the solar system. However, evidence for the effect has so far been indirect. We report precise optical photometric observations of a small near-Earth asteroid, (54509) 2000 PH5, acquired over 4 years. We found that the asteroid has been(More)
Earth-and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales, at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P/Hartley 2. The nucleus is small and dark,(More)
Introduction: We are conducting an observational program designed to determine the overall distributions of size, shape, rotation period, and surface characteristics of cometary nuclei [1]. Here, we present results from a study of the Jupi-ter-family comet 2P/Encke based on observations from Steward Observatory's 2.3m Bok Telescope at Kitt Peak. This comet(More)
Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates(More)
Context. Models have shown that asteroids can undergo fission if their rate of rotation is steadily increased. The forces acting to pull the asteroid apart exceed the material strength and gravitational force holding the asteroid together and material can escape from the surface of the asteroid. Initially forming a binary asteroid system, the components are(More)