Learn More
The polysaccharide xyloglucan is thought to play an important structural role in the primary cell wall of dicotyledons. Accordingly, there is considerable interest in understanding the biochemical basis and regulation of xyloglucan metabolism, and research over the last 16 years has identified a large family of cell wall proteins that specifically catalyze(More)
We have developed a method for the colocalization of xyloglucan endotransglycosylase (XET) activity and the donor substrates to which it has access in situ and in vivo. Sulforhodamine conjugates of xyloglucan oligosaccharides (XGO-SRs), infiltrated into the tissue, act as acceptor substrate for the enzyme; endogenous xyloglucan acts as donor substrate.(More)
Adaptation of plants to environmental conditions requires that sensing of external stimuli be linked to mechanisms of morphogenesis. The Arabidopsis TCH (for touch) genes are rapidly upregulated in expression in response to environmental stimuli, but a connection between this molecular response and developmental alterations has not been established. We(More)
Increasing the L-ascorbate (vitamin C) content of crops could in principle involve promoting its biosynthesis or inhibiting its degradation. Recent progress has revealed biosynthetic pathways for ascorbate, but the degradative pathways remain unclear. The elucidation of such pathways could promote an understanding of the roles of ascorbate in plants, and(More)
Root hairs are formed by two separate processes: initiation and subsequent tip growth. Root hair initiation is always accompanied by a highly localized increase in xyloglucan endotransglycosylase (XET) action at the site of future bulge formation, where the trichoblast locally loosens its cell wall. This suggests an important role of XET in the first stages(More)
Boron (B) is essential for plant cell-wall structure and membrane functions. Compared with its role in cross-linking the pectic domain rhamnogalacturonan II (RG-II), little information is known about the biological role of B in membranes. Here, we investigated the involvement of glycosylinositol phosphorylceramides (GIPCs), major components of lipid rafts,(More)
The endotransglucosylase action of the enzyme xyloglucan endotransglucosylase/hydrolase (XTH) was localized in the roots of diverse vascular plants: club-mosses (lycopodiophytes), ferns, gymnosperms, monocots, and dicots. High action was always found in the epidermis cell wall of the elongation zone and in trichoblasts in the differentiation zone. Clearly(More)
Xyloglucan endotransglycosylases (XETs) cleave and then re-join xyloglucan chains and may thus contribute to both wall-assembly and wall-loosening. The present experiments demonstrate the simultaneous occurrence in vivo of two types of interpolymeric transglycosylation: "integrational" (in which a newly secreted xyloglucan reacts with a previously(More)
Sulphorhodamine-labelled oligosaccharides of xyloglucan are incorporated into the cell wall of Arabidopsis and tobacco roots, and of cultured Nicotiana tabacum cells by the transglucosylase (XET) action of XTHs. In the cell wall of diffusely growing cells, the subcellular pattern of XET action revealed a 'fibrillar' pattern, different from the xyloglucan(More)
To map the preferred cleavage sites of xyloglucan endotransglycosylases (XETs; EC 2.4.1.207) along the donor substrate chain, we incubated the enzymes with tamarind (Tamarindus indica) xyloglucan (donor substrate; approximately 205 kDa; 21 microM) plus the nonasaccharide [(3)H]XLLGol (Gal(2).Xyl(3).Glc(3). [(3)H]glucitol; acceptor substrate; 0.6 microM).(More)