Stephen B Shears

Learn More
Growing evidence suggests that phosphoinositides play an important role in membrane traffic. A polyphosphoinositide phosphatase, synaptojanin 1, was identified as a major presynaptic protein associated with endocytic coated intermediates. We report here that synaptojanin 1-deficient mice exhibit neurological defects and die shortly after birth. In neurons(More)
A central feature of Salmonella pathogenicity is the bacterium's ability to enter into non-phagocytic cells. Bacterial internalization is the consequence of cellular responses characterized by Cdc42- and Rac-dependent actin cytoskeleton rearrangements. These responses are triggered by the co-ordinated function of bacterial proteins delivered into the host(More)
Saiardi et al. (Saiardi, A., Erdjument-Bromage, H., Snowman, A., Tempst, P., and Snyder, S. H. (1999) Curr. Biol. 9, 1323-1326) previously described the cloning of a kinase from yeast and two kinases from mammals (types 1 and 2), which phosphorylate inositol hexakisphosphate (InsP(6)) to diphosphoinositol pentakisphosphate, a "high energy" candidate(More)
Bacterially expressed synapse-specific clathrin assembly protein, AP-3 (F1-20/AP180/NP185/pp155), bound with high affinity both inositol hexakisphosphate (InsP6) (Kd = 239 nM) and diphosphoinositol pentakisphosphate (PP-InsP5) (Kd = 22 nM). The specificity of this ligand binding was demonstrated by competitive displacement of bound [3H]InsP6. IC50 values(More)
The characterization of the multiple inositol polyphosphate phosphatase (MIPP) is fundamental to our understanding of how cells control the signalling activities of 'higher' inositol polyphosphates. We now describe our isolation of a 2.3 kb cDNA clone of a rat hepatic form of MIPP. The predicted amino acid sequence of MIPP includes an 18 amino acid region(More)
In cystic fibrosis (CF) airways, abnormal epithelial ion transport likely initiates mucus stasis, resulting in persistent airway infections and chronic inflammation. Mucus clearance is regulated, in part, by activation of apical membrane receptors coupled to intracellular calcium (Ca(2+)(i)) mobilization. We have shown that Ca(2+)(i) signals resulting from(More)
There is little information concerning the intracellular function of inositol 1,3,4,5,6-pentakis- and hexakisphosphate, despite their being the most abundant inositol polyphosphates. Current opinions that they play passive roles as antioxidants (Graf, E., Mahoney, J. R., Bryant, R. G., and Eaton, J. W. (1987) J. Biol. Chem. 259, 3620-3624) or "housekeeping"(More)
Diphosphoinositol pentakisphosphate (PP-InsP5 or 'InsP7') and bisdiphosphoinositol tetrakisphosphate ([PP]2-InsP4 or 'InsP8') are the most highly phosphorylated members of the inositol-based cell signaling family. We have purified a rat hepatic diphosphoinositol polyphosphate phosphohydrolase (DIPP) that cleaves a beta-phosphate from the diphosphate groups(More)
This review assesses the extent and the significance of catalytic versatility shown by several inositol phosphate kinases: the inositol phosphate multikinase, the reversible Ins(1,3,4) P (3)/Ins(3,4,5,6) P (4) kinase, and the kinases that synthesize diphosphoinositol polyphosphates. Particular emphasis is placed upon data that are relevant to the situation(More)
Aps1 from Schizosaccharomyces pombe (Ingram, S. W., Stratemann, S. A. , and Barnes, L. D. (1999) Biochemistry 38, 3649-3655) and YOR163w from Saccharomyces cerevisiae (Cartwright, J. L., and McLennan, A. G. (1999) J. Biol. Chem. 274, 8604-8610) have both previously been characterized as MutT family hydrolases with high specificity for diadenosine hexa- and(More)