Stephen A Mabon

Learn More
It is possible to monitor the movement of transgenes by tagging them with green fluorescent protein (GFP). In order to develop a model to study transgene flow, canola (Brassica napus cv Westar) was transformed with two GFP constructs, mGFP5er (GFP only) and pSAM 12 [GFP linked to a synthetic Bacillus thuringiensis (Bt) cry1Ac endotoxin gene]. Transformed(More)
The use of transgenic crops has generated concerns about transgene movement to unintended hosts and the associated ecological consequences. Moreover, the in-field monitoring of transgene expression is of practical concern (e.g., the underexpression of an herbicide tolerance gene in crop plants that are due to be sprayed with herbicide). A solution to these(More)
Green fluorescent protein (GFP) is increasingly being used in plant biology from the cellular level to whole plant level. At the cellular level, GFP is being used as an in vivo reporter to assess frequency of transient and stable transformation. GFP has also proven to be an invaluable tool in monitoring trafficking and subcellular localization of protein.(More)
Alternative splicing in mammalian cells has been suggested to be largely controlled by combinatorial binding of basal splicing factors to pre-mRNA templates. This model predicts that distinct sets of pre-mRNA splicing factors are associated with alternatively spliced transcripts. However, no experimental evidence for differential recruitment of splicing(More)
We report that the cyclophilin USA-CyP is part of distinct complexes with two spliceosomal proteins and is involved in both steps of pre-mRNA splicing. The splicing factors hPrp18 and hPrp4 have a short region of homology that defines a high affinity binding site for USA-CyP in each protein. USA-CyP forms separate, stable complexes with hPrp18 and hPrp4 in(More)
  • 1