Stephen A. Jarvis

Learn More
Grid computing is becoming a mainstream technology for large-scale distributed resource sharing and system integration. Workflow management is emerging as one of the most important grid services. In this work, a workflow management system for grid computing, called GridFlow, is presented, including a user portal and services of both global grid workflow(More)
Workload and resource management are essential functionalities in the software infrastructure for grid computing. The management and scheduling of dynamic grid resources in a scalable way requires new technologies to implement a next generation intelligent grid environment. This work demonstrates that AI technologies can be utilised to achieve effective(More)
This paper addresses the dynamic scheduling of parallel jobs with QoS demands (soft-deadlines) in multiclusters and grids. Three metrics (over-deadline, makespan and idle-time) are combined with variable weights to evaluate the scheduling performance. These three metrics are used to measure the extent of the jobs' QoS demand compliance, the resource(More)
Resource management is an important component of a grid computing infrastructure. The scalability and adaptability of such systems are two key challenges that must be addressed. In this work an agent-based resource management system, ARMS, is implemented for grid computing. ARMS utilises the performance prediction techniques of the PACE toolkit to provide(More)
Read more and get great! That's what the book enPDFd concurrent systems formal development in csp will give for every reader to read this book. This is an on-line book provided in this website. Even this book becomes a choice of someone to read, many in the world also loves it so much. As what we talk, when you read more every page of this concurrent(More)
This paper investigates the reliability of application-level multicast based on a distributed hash table (DHT) in a highly dynamic network. Using a node residual lifetime model, we derive the stationary end-to-end delivery ratio of data streaming between a pair of nodes in the worst case, and show through numerical examples that in a practical DHT network,(More)
Mobile sensors can relocate and self-deploy into a network. While focusing on the problems of coverage, existing deployment schemes largely oversimplify the conditions for network connectivity: they either assume that the communication range is large enough for sensors in geometric neighborhoods to obtain location information through local communication, or(More)
Performance prediction is set to play a significant role in supportive middleware that is designed to manage workload on parallel and distributed computing systems. This middleware underpins the discovery of available resources, the identification of a task’s requirements and the matchmaking, scheduling and staging that follow. This paper documents two(More)
This paper addresses workload allocation techniques for two types of sequential jobs that might be found in multicluster systems, namely, non-real-time jobs and soft real-time jobs. Two workload allocation strategies, the optimized mean response time (ORT) and the optimized mean miss rate (OMR), are developed by establishing and numerically solving two(More)
A key technical challenge for overlay multicast is that the highly dynamic multicast members can make data delivery unreliable. In this paper, we address this issue in the context of live media streaming by exploring 1) how to construct a stable multicast tree that minimizes the negative impact of frequent member departures on an existing overlay and 2) how(More)