Learn More
The stroma of spinach chloroplasts contains ascorbic acid and glutathione at millimolar concentrations. [Reduced glutathione]/[oxidized glutathione] and [ascorbate]/[dehydroascorbate] ratios are high under both light and dark conditions and no evidence for a role of oxidized glutathione or dehydroascorbate in the dark-deactivation of fructose bisphosphatase(More)
Thiol-treated spinach (Spinacia oleracea) chloroplast fructose bisphosphatase is powerfully inhibited by Ca2+ non-competitively with respect to its substrate, fructose 1,6-bisphosphate. 500 microM-Ca2+ causes virtually complete inhibition and the Ki is 40 microM. Severe inhibition of sedoheptulose bisphosphatase is also caused by Ca2+. A role for Ca2+ in(More)
The chemical attachment of poly(ethylene glycol) [PEG] to therapeutic proteins produces several benefits, including enhanced plasma half-life, lower toxicity, and increased drug stability and solubility. In certain instances, pegylation of a protein can increase its therapeutic efficacy by reducing the ability of the immune system to detect and mount an(More)
Spinach chloroplast fructose bisphosphatase (EC exists in both oxidised and reduced forms. Only the latter has the kinetic properties that allow it to function at physiological concentrations of fructose 1,6-bisphosphate and Mg(2+). Illumination of freshly prepared type A chloroplasts causes a conversion of oxidised to reduced enzyme. The rate of(More)
Thiol-treated spinach (Spinacia oleracea) chloroplast fructose bisphosphatase (EC is severely inhibited by H2O2, whereas the freshly purified enzyme is little affected. Dithiothreitol reverses inhibition by H2O2, indicating that essential thiol groups are oxidized during H2O2 inactivation. A new role for the dithiol and thioredoxin systems that(More)
Polymer-protein conjugation was performed using N-hydroxysuccinimide and aldehyde-terminated zwitterionic polymers, and the resulting polymer-protein conjugates were characterized by gel electrophoresis and fast protein liquid chromatography. Methacryloyloxyethyl phosphorylcholine (MPC) polymers were prepared by atom transfer radical polymerization in which(More)
The fructose bisphosphatase (EC activity of type A chloroplasts isolated from young (9-day-old) pea (Pisum sativum var. Progress no. 9) plants, assayed at physiological pH, substrate and Mg2+ concentrations, increased rapidly on illumination. The enzyme activity detected was more than sufficient to account for observed rates of Co2 fixation both(More)
Freshly purified spinach chloroplast fructose bisphosphatase is powerfully inhibited by inorganic phosphate competitively with respect to its substrate fructose 1,6-bisphosphate. The concentrations of phosphate and substrate in the chloroplast stroma are such that the enzyme in this form could not operate at a significant rate in vivo. Incubation of the(More)
  • 1