Stephanie J Bryant

Learn More
When using hydrogel scaffolds for cartilage tissue engineering, two gel properties are particularly important: the equilibrium water content (q, equilibrium swelling ratio) and the compressive modulus, K. In this work, chondrocytes were photoencapsulated in degrading and nondegrading poly(ethylene glycol)-based hydrogels to assess extracellular matrix (ECM)(More)
This work investigates the cytocompatibility of several photoinitiating systems for potential cell encapsulation applications. Both UV and visible light initiating schemes were examined. The UV photoinitiators included 2,2-dimethoxy-2-phenylacetophenone (Irgacure 651), 1-hydroxycyclohexyl phenyl ketone (Irgacure 184), 2-methyl-1-[4-(methylthio)(More)
Encapsulating cells in biodegradable hydrogels offers numerous attractive features for tissue engineering, including ease of handling, a highly hydrated tissue-like environment for cell and tissue growth, and the ability to form in vivo. Many properties important to the design of a hydrogel scaffold, such as swelling, mechanical properties, degradation, and(More)
The importance of mesenchymal stem cells (MSC) in vascular regeneration is becoming increasingly recognized. However, few in vitro studies have been performed to identify the effects of environmental elasticity on the differentiation of MSC into vascular cell types. Electrospinning and photopolymerization techniques were used to fabricate a(More)
In developing a scaffold to support new tissue growth, the degradation rate and mass loss profiles of the scaffold are important design parameters. In this study, hydrogels were prepared by copolymerizing a degradable macromer, poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid) endcapped with acrylate groups (PEG-LA-DA) with a nondegradable(More)
Tuning the degradation profiles of polymer cell carriers to match cell and tissue growth is an important design parameter for (cartilage) tissue engineering. In this study, degradable hydrogels were fabricated from divinyl, tetrafunctional poly(ethylene glycol) (PEG) and multivinyl, multifunctional poly(vinyl alcohol) (PVA) macromers to form homopolymer and(More)
Since its inception just over a half century ago, the field of biomaterials has seen a consistent growth with a steady introduction of new ideas and productive branches. This review describes where we have been, the state of the art today, and where we might be in 10 or 20 years. Herein, we highlight some of the latest advancements in biomaterials that aim(More)
The implantation of non-biological materials, including scaffolds for tissue engineering, ubiquitously leads to a foreign body response (FBR). We recently reported that this response negatively impacts fibroblasts encapsulated within a synthetic hydrogel and in turn leads to a more severe FBR, suggesting a cross-talk between encapsulated cells and(More)
Poly(ethylene glycol) (PEG) hydrogels, modified with RGD, are promising platforms for cell encapsulation and tissue engineering. While these hydrogels offer tunable mechanical properties, the extent of the host response may limit their in vivo applicability. The overall objective was to characterize the effects of hydrogel stiffness on the in vitro(More)
OBJECTIVE Mechanical loading of cell-laden synthetic hydrogels is one strategy for regenerating functional cartilage. This work tests the hypothesis that type of loading (continuous vs intermittent) and timing when loading is applied (immediate vs delayed) influence anabolic and catabolic activities of chondrocytes when encapsulated in poly(ethylene glycol)(More)