Learn More
The expression pattern for tissue transglutaminase (TG2) suggests that it regulates cartilage formation. We analyzed the role of TG2 in early stages of chondrogenesis using differentiating high-density cultures of mesenchymal cells from chicken limb bud as a model. We demonstrate that TG2 promotes cell differentiation towards a pre-hypertrophic stage(More)
OBJECTIVE In vitro, transglutaminase-2 (TG2)-mediated activation of the β-catenin signaling pathway is central in warfarin-induced calcification, warranting inquiry into the importance of this signaling axis as a target for preventive therapy of vascular calcification in vivo. METHODS AND RESULTS The adverse effects of warfarin-induced elastocalcinosis in(More)
We have characterized the protein cross-linking enzyme transglutaminase (TGs) genes in zebrafish, Danio rerio, based on the analysis of their genomic organization and phylogenetics. Thirteen zebrafish TG genes (zTGs) have been identified, of which 11 show high homology to only 3 mammalian enzymes: TG1, TG2 and FXIIIa. No zebrafish homologues were identified(More)
Of the eight catalytic transglutaminases (TGs), transglutaminase 2 (TG2) has been the most comprehensively studied due to its ubiquitous expression in multiple cell types. Despite the observed critical role for this enzyme in multiple biological processes in vitro, TG2 knockout mouse models have shown no severe developmental phenotypes, suggesting(More)
OBJECTIVE Accumulating experimental evidence implicates β-catenin signaling and enzyme transglutaminase 2 (TG2) in the progression of vascular calcification, and our previous studies have shown that TG2 can activate β-catenin signaling in vascular smooth muscle cells (VSMCs). Here we investigated the role of the TG2/β-catenin signaling axis in vascular(More)
The β-catenin signaling axis is critical for normal embryonic development and tissue homeostasis in adults. We have previously shown that extracellular enzyme transglutaminase 2 (TG2) activates β-catenin signaling in vascular smooth muscle cells (VSMCs). In this study, we provide several lines of evidence that TG2 functions as an activating ligand of the(More)
  • 1