Stephanie Bertram

Learn More
The highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) poses a constant threat to human health. The viral spike protein (SARS-S) mediates host cell entry and is a potential target for antiviral intervention. Activation of SARS-S by host cell proteases is essential for SARS-CoV infectivity but remains incompletely understood. Here, we(More)
The influenza virus hemagglutinin (HA) mediates the first essential step in the viral life cycle, virus entry into target cells. Influenza virus HA is synthesised as a precursor protein in infected cells and requires cleavage by host cell proteases to transit into an active form. Cleavage is essential for influenza virus infectivity and the HA-processing(More)
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) can be proteolytically activated by cathepsins B and L upon viral uptake into target cell endosomes. In contrast, it is largely unknown whether host cell proteases located in the secretory pathway of infected cells and/or on the surface of target cells can cleave SARS S.(More)
The type II transmembrane serine protease (TTSP) TMPRSS2 cleaves and activates the influenza virus and coronavirus surface proteins. Expression of TMPRSS2 is essential for the spread and pathogenesis of H1N1 influenza viruses in mice. In contrast, H3N2 viruses are less dependent on TMPRSS2 for viral amplification, suggesting that these viruses might employ(More)
Author affiliations: Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany (I.A. Asante, S. Bertram, G. Gabriel); Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana (I.A. Asante, W.K. Ampofo); Center for Structural and Cellular Biology in Medicine at the University of Lübeck, Lübeck, Germany(More)
Platelets are associated with HIV in the blood of infected individuals and might modulate viral dissemination, particularly if the virus is directly transmitted into the bloodstream. The C-type lectin DC-SIGN and the novel HIV attachment factor CLEC-2 are expressed by platelets and facilitate HIV transmission from platelets to T-cells. Here, we studied the(More)
Proteolytic activation of the hemagglutinin (HA) protein is indispensable for influenza virus infectivity, and the tissue expression of the responsible cellular proteases impacts viral tropism and pathogenicity. The HA protein critically contributes to the exceptionally high pathogenicity of the 1918 influenza virus, but the mechanisms underlying cleavage(More)
The novel human coronavirus EMC (hCoV-EMC), which recently emerged in Saudi Arabia, is highly pathogenic and could pose a significant threat to public health. The elucidation of hCoV-EMC interactions with host cells is critical to our understanding of the pathogenesis of this virus and to the identification of targets for antiviral intervention. Here we(More)
Proteolysis of influenza virus hemagglutinin by host cell proteases is essential for viral infectivity, but the proteases responsible are not well defined. Recently, we showed that engineered expression of the type II transmembrane serine proteases (TTSPs) TMPRSS2 and TMPRSS4 allows hemagglutinin (HA) cleavage. Here we analyzed whether TMPRSS2 and TMPRSS4(More)
Annual influenza epidemics and occasional pandemics pose a severe threat to human health. Host cell factors required for viral spread but not for cellular survival are attractive targets for novel approaches to antiviral intervention. The cleavage activation of the influenza virus hemagglutinin (HA) by host cell proteases is essential for viral infectivity.(More)