Stephanie A. Robb

Learn More
Muscular dystrophies with reduced glycosylation of alpha-dystroglycan (alpha-DG), commonly referred to as dystroglycanopathies, are a heterogeneous group of autosomal recessive conditions which include a wide spectrum of clinical severity. Reported phenotypes range from severe congenital onset Walker-Warburg syndrome (WWS) with severe structural brain and(More)
A cloned seven transmembrane-spanning Drosophila octopamine/tyramine receptor, permanently expressed in a Chinese hamster ovary cell line, both inhibits adenylate cyclase activity and leads to the elevation of intracellular Ca2+ levels by separate G-protein-coupled pathways. Agonists of this receptor (octopamine and tyramine), differing by only a single(More)
We previously showed that mutations in LIS1 and DCX account for approximately 85% of patients with the classic form of lissencephaly (LIS). Some rare forms of LIS are associated with a disproportionately small cerebellum, referred to as lissencephaly with cerebellar hypoplasia (LCH). Tubulin alpha1A (TUBA1A), encoding a critical structural subunit of(More)
Choline acetyltransferase (ChAT; EC ) catalyzes the reversible synthesis of acetylcholine (ACh) from acetyl CoA and choline at cholinergic synapses. Mutations in genes encoding ChAT affecting motility exist in Caenorhabditis elegans and Drosophila, but no CHAT mutations have been observed in humans to date. Here we report that mutations in CHAT cause a(More)
Dominant mutations in the skeletal muscle ryanodine receptor (RYR1) gene are well-recognized causes of both malignant hyperthermia susceptibility (MHS) and central core disease (CCD). More recently, recessive RYR1 mutations have been described in few congenital myopathy patients with variable pathology, including multi-minicores. Although a clinical overlap(More)
Ryanodine receptor 1 (RYR1) mutations are a common cause of congenital myopathies associated with both dominant and recessive inheritance. Histopathological findings frequently feature central cores or multi-minicores, more rarely, type 1 predominance/uniformity, fiber-type disproportion, increased internal nucleation, and fatty and connective tissue. We(More)
Angelman's syndrome and Prader-Willi syndrome are both causes of mental retardation with recognisable, but quite different, clinical phenotypes. Both are associated with deletions of chromosome 15q11-13, of maternal origin in Angelman's and paternal in Prader-Willi. Prader-Willi can arise by inheritance of two chromosomes 15 from the mother and none from(More)
BACKGROUND Mutations in the postsynaptic adaptor protein Dok-7 underlie congenital myasthenic syndrome (CMS) with a characteristic limb girdle pattern of muscle weakness. Patients usually do not respond to or worsen with the standard CMS treatments: cholinesterase inhibitors and 3,4-diaminopyridine. However, anecdotal reports suggest they may improve with(More)
OBJECTIVE To expand the clinical phenotype of autosomal dominant congenital spinal muscular atrophy with lower extremity predominance (SMA-LED) due to mutations in the dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) gene. METHODS Patients with a phenotype suggestive of a motor, non-length-dependent neuronopathy predominantly affecting the lower limbs were(More)
Brain MRI was performed on 12 patients with acute disseminated encephalomyelitis (ADEM). Multifocal white matter lesions indistinguishable from those seen in multiple sclerosis (MS) were found in 10. In 5 there were rather extensive symmetric abnormalities in the cerebral (2) or cerebellar white matter (2), or basal ganglia (1). Follow-up MRI after(More)