Stephane V Sizonenko

Learn More
In the developing human brain, the cortical sulci formation is a complex process starting from 14 weeks of gestation onward. The potential influence of underlying mechanisms (genetic, epigenetic, mechanical or environmental) is still poorly understood, because reliable quantification in vivo of the early folding is lacking. In this study, we investigate the(More)
Distinctive cerebral lesions with disruptions to the developing white matter are found in very low birth weight (VLBW) infants. Although hypoxia-ischemia (HI) is a causal pathway, the pathogenesis of cerebral white matter injury in the VLBW infant is not fully understood. Pertinent murine models would facilitate the investigation of the processes leading to(More)
Insulin growth factor 1 (IGF-1) has an important role in brain development and is strongly expressed during recovery after a hypoxic-ischemic injury. Some of its central actions could be mediated through the N-terminal tripeptide fragment of IGF-1: Gly-Pro-Glu (GPE). The neuroprotective properties of GPE given after a moderate injury in the developing rat(More)
The hippocampus is known to be vulnerable to hypoxia, stress, and undernutrition, all likely to be present in fetal intrauterine growth restriction (IUGR). The effect of IUGR in preterm infants on the hippocampus was studied using 3D magnetic resonance imaging at term-equivalent age Thirteen preterm infants born with IUGR after placental insufficiency were(More)
OBJECTIVE Preterm infants exhibit chronic deficits in white matter (WM) and cortical maturation. Although fetal infection/inflammation may contribute to WM pathology, the factors contributing to cortical changes are largely unknown. We examined the effect of fetal lipopolysaccharide (LPS) exposure on WM and cortical development as assessed by magnetic(More)
Strategies to enhance the capacity of grafted stem/progenitors cells to generate multipotential, proliferative and migrating pools of cells in the postnatal brain could be crucial for structural repair after brain damage. We investigated whether the over-expression of basic fibroblast growth factor 2 (FGF-2) in neural progenitor cells (NPCs) could provide a(More)
Cerebral hypoxia-ischemia is an important cause of brain injury in the newborn infant. Our purpose was to study magnetic resonance (MR) imaging changes in P7 rat brains submitted to permanent or reversible ischemia. Ischemia was induced by permanent electro-cauterization of the middle cerebral artery combined with a permanent or a transient (50 min) common(More)
Recent experimental studies have shown that early brain activity is crucial for neuronal survival and the development of brain networks; however, it has been challenging to assess its role in the developing human brain. We employed serial quantitative magnetic resonance imaging to measure the rate of growth in circumscribed brain tissues from preterm to(More)
  • 1