Learn More
The dynamic regulation of actin polymerization plays crucial roles in cell morphology and endocytosis. The mechanistic details of these processes and the proteins involved are not fully understood, especially in neurons. PICK1 is a PDZ-BAR-domain protein involved in regulated AMPA receptor (AMPAR) endocytosis in neurons. Here, we demonstrate that PICK1(More)
The small ubiquitin-like modifier protein (SUMO) regulates transcriptional activity and the translocation of proteins across the nuclear membrane. The identification of SUMO substrates outside the nucleus is progressing but little is yet known about the wider cellular role of protein SUMOylation. Here we report that in rat hippocampal neurons multiple(More)
BACKGROUND The stress hormone corticosterone has the ability both to enhance and suppress synaptic plasticity and learning and memory processes. However, until today there is very little known about the molecular mechanism that underlies the bidirectional effects of stress and corticosteroid hormones on synaptic efficacy and learning and memory processes.(More)
Post-translational protein modifications are integral components of signalling cascades that enable cells to efficiently, rapidly and reversibly respond to extracellular stimuli. These modifications have crucial roles in the CNS, where the communication between neurons is particularly complex. SUMOylation is a post-translational modification in which a(More)
Microglia motility plays a crucial role in response to lesion or exocytotoxic damage of the cerebral tissue. We used two in vitro assays, a wound-healing model and a chemotaxis assay, to show that the neuropeptide neurotensin elicited the migration of the human microglial cell line C13NJ by a mechanism dependent on both phosphatidylinositol 3-kinase (PI(More)
BACKGROUND INFORMATION Sumoylation is a key post-translational modification by which the Small Ubiquitin-like MOdifier (SUMO) polypeptide is covalently attached to specific lysine residues of substrate proteins through a specific enzymatic pathway. Although sumoylation participates in the regulation of nuclear homeostasis, the sumoylation machinery is also(More)
Syntenin is a approximately 33 kDa scaffolding protein that we have shown previously to bind to kainate receptor subunits via a PDZ interaction. Here we show that syntenin has a tightly regulated developmental profile in neurons and is most abundant in the period of intense growth and synapse formation and stabilization. There is extensive colocalization of(More)
BACKGROUND Small Ubiquitin-like MOdifier protein (SUMO) is a key regulator of nuclear functions but little is known regarding the role of the post-translational modification sumoylation outside of the nucleus, particularly in the Central Nervous System (CNS). METHODOLOGY/PRINCIPAL FINDINGS Here, we report that the expression levels of SUMO-modified(More)
Kainate receptors (KARs) play important roles in the modulation of neurotransmission and plasticity, but the mechanisms that regulate their surface expression and endocytic sorting remain largely unknown. Here, we show that in cultured hippocampal neurons the surface expression of GluR6-containing KARs is dynamically regulated. Furthermore, internalized(More)
Microglia motility plays a crucial role in response to lesion or exocytotoxic damage of the cerebral tissue. The neuropeptide neurotensin elicited the migration of the human microglial cell line C13NJ by a mechanism dependent on both phosphatidylinositol-3 kinase (PI3 kinase) and mitogen-activated protein (MAP) kinases pathways. The effect of neurotensin on(More)