Learn More
The small ubiquitin-like modifier protein (SUMO) regulates transcriptional activity and the translocation of proteins across the nuclear membrane. The identification of SUMO substrates outside the nucleus is progressing but little is yet known about the wider cellular role of protein SUMOylation. Here we report that in rat hippocampal neurons multiple(More)
The dynamic regulation of actin polymerization plays crucial roles in cell morphology and endocytosis. The mechanistic details of these processes and the proteins involved are not fully understood, especially in neurons. PICK1 is a PDZ-BAR-domain protein involved in regulated AMPA receptor (AMPAR) endocytosis in neurons. Here, we demonstrate that PICK1(More)
BACKGROUND The stress hormone corticosterone has the ability both to enhance and suppress synaptic plasticity and learning and memory processes. However, until today there is very little known about the molecular mechanism that underlies the bidirectional effects of stress and corticosteroid hormones on synaptic efficacy and learning and memory processes.(More)
Post-translational protein modifications are integral components of signalling cascades that enable cells to efficiently, rapidly and reversibly respond to extracellular stimuli. These modifications have crucial roles in the CNS, where the communication between neurons is particularly complex. SUMOylation is a post-translational modification in which a(More)
BACKGROUND INFORMATION Sumoylation is a key post-translational modification by which the Small Ubiquitin-like MOdifier (SUMO) polypeptide is covalently attached to specific lysine residues of substrate proteins through a specific enzymatic pathway. Although sumoylation participates in the regulation of nuclear homeostasis, the sumoylation machinery is also(More)
Syntenin is a approximately 33 kDa scaffolding protein that we have shown previously to bind to kainate receptor subunits via a PDZ interaction. Here we show that syntenin has a tightly regulated developmental profile in neurons and is most abundant in the period of intense growth and synapse formation and stabilization. There is extensive colocalization of(More)
The neurotensin receptor-3, originally identified as sortilin, is unique among neuropeptide receptors in that it is a single trans-membrane domain, type I receptor. To gain insight into the functionality of neurotensin receptor-3, we examined the neurotensin-induced intracellular trafficking of this receptor in the human carcinoma cell line HT29, which(More)
BACKGROUND Small Ubiquitin-like MOdifier protein (SUMO) is a key regulator of nuclear functions but little is known regarding the role of the post-translational modification sumoylation outside of the nucleus, particularly in the Central Nervous System (CNS). METHODOLOGY/PRINCIPAL FINDINGS Here, we report that the expression levels of SUMO-modified(More)
We have analyzed the expression of the anti-apoptotic proteins bcl-2, bcl-xl and that of bax, a pro-apoptotic protein, in human WHO grade II astrocytomas (LGA) and WHO grade IV glioblastoma multiforme (GBM). Tumors were obtained immediately after surgical resection and were analyzed by immunohistochemistry (IHC), laser confocal microscopy (LCM) and(More)
The calcium-sensing receptor (CaSR) is a class III G-protein-coupled receptor (GPCR) that responds to changes in extracellular calcium concentration and plays a crucial role in calcium homeostasis. The mechanisms controlling CaSR trafficking and surface expression are largely unknown. Using a CaSR tagged with the pH-sensitive GFP super-ecliptic pHluorin(More)