#### Filter Results:

- Full text PDF available (2)

#### Publication Year

2008

2014

- This year (0)
- Last 5 years (4)
- Last 10 years (5)

#### Publication Type

#### Co-author

#### Publication Venue

Learn More

- Xiaofei Xu, Diego E Cristancho, Stéphane Costeux, Zhen-Gang Wang
- The Journal of chemical physics
- 2012

We propose a density-functional theory (DFT) describing inhomogeneous polymer-carbon dioxide mixtures based on a perturbed-chain statistical associating fluid theory equation of state (PC-SAFT EOS). The weight density functions from fundamental measure theory are used to extend the bulk excess Helmholtz free energy to the inhomogeneous case. The additional… (More)

- Xiaofei Xu, Diego E Cristancho, Stéphane Costeux, Zhen-Gang Wang
- The journal of physical chemistry. B
- 2014

We study the solvation of a single nanoparticle in poly(methyl methacrylate)-CO2 mixture at coexistence by using statistical classical density-functional theory. In the temperature range where there is triple-phase coexistence, the lowest solvation free energy occurs at the triple point pressure. Beyond the end point temperature of the triple line, and for… (More)

- Xiaofei Xu, Diego E Cristancho, Stéphane Costeux, Zhen-Gang Wang
- Soft matter
- 2013

We combine density-functional theory with the string method to calculate the minimum free energy path of bubble nucleation in two polymer–CO2 mixture systems, poly(methyl methacrylate) (PMMA)–CO2 and polystyrene (PS)–CO2. Nucleation is initiated by saturating the polymer liquid with high pressure CO2 and subsequently reducing the pressure to ambient… (More)

- Xiaofei Xu, Diego E Cristancho, Stéphane Costeux, Zhen-Gang Wang
- The journal of physical chemistry letters
- 2013

We combine a newly developed density-functional theory with the string method to calculate the minimum free energy path of bubble nucleation in compressible polymer-CO2 mixtures. Nucleation is initiated by saturating the polymer liquid with high pressure CO2 and subsequently reducing the pressure to ambient condition. Below a critical temperature, we find… (More)

- ‹
- 1
- ›