Stephan T. Grilli

Learn More
In this paper, several numerical aspects of an existing model for fully nonlinear waves are improved and validated to study wave breaking due to shoaling over a gentle plane slope and wave breaking induced by a moving lateral boundary. The model is based on fully nonlinear potential flow theory and combines a higher-order Boundary Element Method (BEM) for(More)
An accurate three-dimensional numerical model, applicable to strongly non-linear waves, is proposed. The model solves fully non-linear potential flow equations with a free surface using a higher-order three-dimensional boundary element method (BEM) and a mixed Eulerian–Lagrangian time updating, based on second-order explicit Taylor series expansions with(More)
A new method is proposed for the generation of permanent form periodic waves, in a twodimensional fully nonlinear potential flow model. In this method, a constant volume is maintained in the computational domain (“wave tank”) by simultaneously generating a mean current, equal and opposite to the waves mean mass transport velocity. An absorbing beach is(More)
The December 26, 2004 tsunami was perhaps the most devastating tsunami in recorded history, causing over 200,000 fatalities and widespread destruction in countries bordering the Indian Ocean. It was generated by the third largest earthquake on record Mw=9.1–9.3 and was a truly global event, with significant wave action felt around the world. Many(More)
Three-dimensional (3D) directional wave focusing is one of the mechanisms that contributes to the generation of extreme waves, also known as rogue waves, in the ocean. To simulate and analyze this phenomenon, we generate extreme waves in a 3D numerical wave tank (NWT), by specifying the motion of a snake wavemaker. The NWT solves fully nonlinear potential(More)
Numerical simulations are performed with a two-dimensional 2D fully nonlinear potential flow FNPF model for tsunami generation by two idealized types of submarine mass failure SMF : underwater slides and slumps. These simulations feature rigid or deforming SMFs with a Gaussian cross section, translating down a plane slope. In each case, the SMF center of(More)
Case studies of landslide tsunamis require integration of marine geology data and interpretations into numerical simulations of tsunami attack. Many landslide tsunami generation and propagation models have been proposed in recent time, further motivated by the 1998 Papua New Guinea event. However, few of these models have proven capable of integrating the(More)
The Papua New Guinea (PNG) tsunami of July 1998 was a seminal event because it demonstrated that relatively small and relatively deepwater Submarine Mass Failures (SMFs) can cause devastating local tsunamis that strike without warning. There is a comprehensive data set that proves this event was caused by a submarine slump. Yet, the source of the tsunami(More)