Learn More
Targeting of peroxisomal membrane proteins (PMPs) is a multistep process that requires not only recognition of PMPs in the cytosol but also their insertion into the peroxisomal membrane. As a consequence, targeting signals of PMPs (mPTS) are rather complex. A candidate protein for the PMP recognition event is Pex19p, which interacts with most PMPs. However,(More)
Membrane proteins span a large variety of different functions such as cell-surface receptors, redox proteins, ion channels, and transporters. Proteins with functional pores show different characteristics of helix-helix packing as other helical membrane proteins. We found that the helix-helix contacts of 13 nonhomologous high-resolution structures of(More)
Most state-of-the-art protein-protein docking algorithms use the Fast Fourier Transform (FFT) technique to sample the six-dimensional translational and rotational space. Scoring functions including shape complementarity, electrostatics, and desolvation are usually exploited in ranking the docking conformations. While these rigid-body docking methods provide(More)
Structures of hitherto unknown protein complexes can be predicted by docking the solved protein monomers. Here, we present a method to refine initial docking estimates of protein complex structures by a Monte Carlo approach including rigid-body moves and side-chain optimization. The energy function used is comprised of van der Waals, Coulomb, and atomic(More)
BACKGROUND Superior treatment response and survival for patients with human papilloma virus (HPV)-positive head and neck cancer (HNSCC) are documented in clinical studies. However, the relevance of high-grade acute organ toxicity (HGAOT), which has also been correlated with improved prognosis, has attracted scant attention in HPV-positive HNSCC patients.(More)
We predicted in human peroxisomal membrane proteins (PMPs) the binding sites for PEX19, a key player in the topogenesis of PMPs, by virtue of an algorithm developed for yeast PMPs. The best scoring PEX19-binding site was found in the adrenoleukodystrophy protein (ALDP). The identified site was indeed bound by human PEX19 and was also recognized by the(More)
In photosynthetic organisms chlorophyll and heme biosynthesis is tightly regulated at various levels in response to environmental adaptation and plant development. The formation of 5-aminolevulinic acid (ALA) is the key regulatory step and provides adequate amounts of the common precursor molecule for the Mg and Fe branches of tetrapyrrole biosynthesis.(More)
RHYTHM is a web server that predicts buried versus exposed residues of helical membrane proteins. Starting from a given protein sequence, secondary and tertiary structure information is calculated by RHYTHM within only a few seconds. The prediction applies structural information from a growing data base of precalculated packing files and evolutionary(More)
Tail-anchored proteins contain a single transmembrane domain (TMD) followed by a short C-terminal domain extending into the organellar lumen. Tail-anchored proteins are thought to target to the correct subcellular compartment by virtue of general physicochemical properties of their C-termini; however, the machineries that enable correct sorting remain(More)
There is a debate on the folding of proteins with inverted sequences. Theoretical approaches and experiments give contradictory results. Many proteins in the Protein Data Bank (PDB) show conspicuous inverse sequence similarity (ISS) to each other. Here we analyze whether this ISS is related to structural similarity. For the first time, we performed a large(More)