Learn More
BACKGROUND The interrogation of proteomes ("proteomics") in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine. METHODOLOGY/PRINCIPAL FINDINGS We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes(More)
The potential of stable Fe isotopes as a tracer for the biogeochemical Fe cycle depends on the understanding and quantification of the fractionation processes involved. Iron uptake and cycling by plants may influence Fe speciation in soils. Here, we determined the Fe isotopic composition of different plant parts including the complete root system of three(More)
For the first time, phytosiderophore (PS) release of wheat (Triticum aestivum cv Tamaro) grown on a calcareous soil was repeatedly and nondestructively sampled using rhizoboxes combined with a recently developed root exudate collecting tool. As in nutrient solution culture, we observed a distinct diurnal release rhythm; however, the measured PS efflux was(More)
Iron isotope fractionation during dissolution of goethite (alpha-FeOOH) was studied in laboratory batch experiments. Proton-promoted (HCl), ligand-controlled (oxalate dark), and reductive (oxalate light) dissolution mechanisms were compared in order to understand the behavior of iron isotopes during natural weathering reactions. Multicollector ICP-MS was(More)
Keywords Equilibrium model. Kinetic model. Rhizosphere. Root exudate. Local equilibrium assumption In a recent article, published in issue 383 of Plant and Soil, Schenkeveld et al. (2014) report that the mobilization of metals from uncontaminated calcareous soils by phytosiderophores (PS) could not be predicted by multi-surface equilibrium modeling, because(More)
Previous studies have shown that engineered nanomaterials can be transferred from prey to predator, but the ecological impacts of this are mostly unknown. In particular, it is not known if these materials can be biomagnified-a process in which higher concentrations of materials accumulate in organisms higher up in the food chain. Here, we show that bare(More)
Recently, we reported a SOMAmer-based, highly multiplexed assay for the purpose of biomarker identification. To enable seamless transition from highly multiplexed biomarker discovery assays to a format suitable and convenient for diagnostic and life-science applications, we developed a streamlined, plate-based version of the assay. The plate-based version(More)
Solar conversion to electricity or to fuels based on electron-hole pair production in semiconductors is a highly evolved scientific and commercial enterprise. Recently, it has been posited that charge carriers either directly transferred from the plasmonic structure to a neighbouring semiconductor (such as TiO₂) or to a photocatalyst, or induced by energy(More)
An important precondition for the successful development of diagnostic assays of cerebrospinal fluid (CSF) biomarkers of age-related neurodegenerative diseases is an understanding of the dynamic nature of the CSF proteome during the normal aging process. In this study, a novel proteomic technology was used to quantify hundreds of proteins simultaneously in(More)
Trihydroxamate siderophores have been proposed for use as mediators of actinide and heavy metal mobility in contaminated subsurface zones. These microbially produced ligands, common in terrestrial and marine environments, recently have been derivatized synthetically to enhance their affinity for transuranic metal cations. However, the interactions between(More)