Stephan Diekmann

Learn More
To investigate the dynamics of centromere organization, we have assessed the exchange rates of inner centromere proteins (CENPs) by quantitative microscopy throughout the cell cycle in human cells. CENP-A and CENP-I are stable centromere components that are incorporated into centromeres via a "loading-only" mechanism in G1 and S phase, respectively. A(More)
Centromeres are important structural constituents of chromosomes that ensure proper chromosome segregation during mitosis by providing defined sites for kinetochore attachment. In higher eukaryotes, centromeres have no specific DNA sequence and thus, they are rather determined through epigenetic mechanisms. A fundamental process in centromere establishment(More)
We have employed a novel in vivo approach to study the structure and function of the eukaryotic kinetochore multiprotein complex. RNA interference (RNAi) was used to block the synthesis of centromere protein A (CENP-A) and Clip-170 in human cells. By coexpression, homologous kinetochore proteins from Saccharomyces cerevisiae were then tested for the ability(More)
Mitosis ensures equal genome segregation in the eukaryotic lineage. This process is facilitated by microtubule attachment to each chromosome via its centromere. In centromeres, canonical histone H3 is replaced in nucleosomes by a centromere-specific histone H3 variant (CENH3), providing the unique epigenetic signature required for microtubule binding. Due(More)
The Holliday (four-way) junction is a critical intermediate in homologous genetic recombination. We have studied the structure of a series of four-way junctions, constructed by hybridization of four 80 nucleotide synthetic oligonucleotides. These molecules migrate anomalously slowly in gel electrophoresis. Each arm of any junction could be selectively(More)
Heterochromatin protein 1 (HP1) is a conserved nonhistone chromosomal protein with functions in euchromatin and heterochromatin. Here we investigated the diffusional behaviors of HP1 isoforms in mammalian cells. Using fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) we found that in interphase cells most HP1(More)
The cell nucleus is responsible for the storage, expression, propagation, and maintenance of the genetic material it contains. Highly organized macromolecular complexes are required for these processes to occur faithfully in an extremely crowded nuclear environment. In addition to chromosome territories, the nucleus is characterized by the presence of(More)
Observations that beta-sheet proteins form amyloid fibrils under at least partially denaturing conditions has raised questions as to whether these fibrils assemble by docking of preformed beta-structure or by association of unfolded polypeptide segments. By using alpha-helical protein apomyoglobin, we show that the ease of fibril assembly correlates with(More)
The four-way junction between DNA helices is the central intermediate in recombination, and the manner of its interaction with resolvase enzymes can determine the genetic outcome of the process. A knowledge of its structure is a prerequisite to understanding the interaction with proteins, and there has been recent progress. Here we use fluorescence energy(More)