Stephan Clemens

Learn More
Over the past 200 years emissions of toxic heavy metals have risen tremendously and significantly exceed those from natural sources for practically all metals. Uptake and accumulation by crop plants represents the main entry pathway for potentially health-threatening toxic metals into human and animal food. Of major concern are the metalloids arsenic (As)(More)
Land plants secrete a layer of wax onto their aerial surfaces that is essential for survival in a terrestrial environment. This wax is composed of long-chain, aliphatic hydrocarbons derived from very-long-chain fatty acids (VLCFAs). Using the Arabidopsis expressed sequence tag database, we have identified a gene, designated CUT1, that encodes a VLCFA(More)
Some plants can hyperaccumulate metal ions that are toxic to virtually all other organisms at low dosages. This trait could be used to clean up metal-contaminated soils. Moreover, the accumulation of heavy metals by plants determines both the micronutrient content and the toxic metal content of our food. Complex interactions of transport and chelating(More)
Toxic effects of both essential and non-essential heavy metals are well documented in plants. Very little is known, however, about their modes of toxicity, about tolerance mechanisms and the signalling cascades involved in mediating transcriptional responses to toxic metal excess. We analysed transcriptome changes upon Cd2+ and Cu2+ exposure in roots of(More)
Phytochelatins play major roles in metal detoxification in plants and fungi. However, genes encoding phytochelatin synthases have not yet been identified. By screening for plant genes mediating metal tolerance we identified a wheat cDNA, TaPCS1, whose expression in Saccharomyces cerevisiae results in a dramatic increase in cadmium tolerance. TaPCS1 encodes(More)
Both essential and non-essential transition metal ions can easily be toxic to cells. The physiological range for essential metals between deficiency and toxicity is therefore extremely narrow and a tightly controlled metal homeostasis network to adjust to fluctuations in micronutrient availability is a necessity for all organisms. One protective strategy(More)
Practically all human populations are environmentally exposed to cadmium (Cd), mostly through plant-derived food. A growing body of epidemiological evidence suggests that there is no margin of safety between current Cd exposure levels and the threshold for adverse health effects and, hence, there is an urgent need to lower human Cd intake. Here we review(More)
The hyperaccumulation of zinc (Zn) and cadmium (Cd) is a constitutive property of the metallophyte Arabidopsis halleri. We therefore used Arabidopsis GeneChips to identify genes more active in roots of A. halleri as compared to A. thaliana under control conditions. The two genes showing highest expression in A. halleri roots relative to A. thaliana roots(More)
Nonessential metal ions such as cadmium are most likely transported across plant membranes via transporters for essential cations. To identify possible pathways for Cd2+ transport we tested putative plant cation transporters for Cd2+ uptake activity by expressing cDNAs in Saccharomyces cerevisiae and found that expression of one clone, LCT1, renders the(More)