Learn More
In 1900, Ramón y Cajal advanced the neuron doctrine, defining the neuron as the fundamental signaling unit of the nervous system. Over a century later, neurobiologists address the circuit doctrine: the logic of the core units of neuronal circuitry that control animal behavior. These are circuits that can be called into action for perceptual, conceptual, and(More)
1. Local application of 5-hydroxytryptamine (5-HT) in the area in which a dense 5-HT plexus is located in the lamprey spinal cord leads to a marked depression of the late phase of the afterhyperpolarization (AHP) following the action potential. This effect was observed in motoneurons, premotor interneurons, and giant interneurons, whereas no effect was(More)
A new class of excitatory premotor interneurons that are important in the generation of locomotion in the lamprey has now been described. In the isolated spinal cord, these neurons act simultaneously with their postsynaptic motoneurons during fictive swimming. They are small and numerous, and they monosynaptically excite both motoneurons and inhibitory(More)
1. The possible involvement of calcium-dependent potassium channels (KCa) in the termination of locomotor bursts was investigated by administration of a specific blocker, apamin, in the lamprey spinal cord in vitro. The effects were examined by recording the efferent activity in ventral roots and by intracellular recording from interneurons and motoneurons.(More)
The intrastriatal microcircuit is a predominantly inhibitory GABAergic network comprised of a majority of projection neurons [medium spiny neurons (MSNs)] and a minority of interneurons. The connectivity within this microcircuit is divided into two main categories: lateral connectivity between MSNs, and inhibition mediated by interneurons, in particular(More)
A central network of neurones in the spinal cord has been shown to produce a rhythmic motor output similar to locomotion after suppression of all afferent inflow. The experiments were performed mainly in acute spinal cats (th. 12), which had received DOPA i.v. and the monoamine oxidase inhibitor Nialamide. In some preparations all dorsal roots supplying the(More)
The different neural control systems involved in goal-directed vertebrate locomotion are reviewed. They include not only the central pattern generator networks in the spinal cord that generate the basic locomotor synergy and the brainstem command systems for locomotion but also the control systems for steering and control of body orientation (posture) and(More)