Stella Foaleng Mafang

Learn More
The energy transfer between the two interacting optical waves in a distributed sensor based on stimulated Brillouin scattering can lead to a non-uniform spectral distribution of the pumping power after a long propagation. This results in a spectrally distorted gain that biases the determination of the maximum gain frequency. A quantitative analytical model(More)
A general analytic solution for Brillouin distributed sensing in optical fibers with sub-meter spatial resolution is obtained by solving the acoustical-optical coupled wave equations by a perturbation method. The Brillouin interaction of a triad of square pump pulses with a continuous signal is described, covering a wide range of pumping schemes. The model(More)
We provide a complete experimental characterization of stimulated Brillouin scattering in a 160 m long solid-core photonic crystal fiber, including threshold and spectrum measurements as well as position-resolved mapping of the Brillouin frequency shift. In particular, a three-fold increase of the Brillouin threshold power is observed, in excellent(More)
We propose a novel configuration for a Brillouin distributed sensor based on Brillouin optical time domain analysis. This new configuration eliminates many intensity noise issues found in previous schemes. Resolution of 3.5 m all over a 47 km single-mode fibre was achieved and resolution down to 30 cm in a few kilometre fibre. Noise reduction makes possible(More)
Distributed measurements of the Brillouin gain spectrum in a photonic crystal fibre have been carried out for the first time to our knowledge. These measurements confirm the strong increase of the Brillouin threshold as resulting from the broadband and multimode nature of the Brillouin gain spectrum all along the fibre. INTRODUCTION The periodic(More)
Like photonic crystals have revolutionized the way of manipulating optical waves at the sub-micron scale, phononic crystals have more recently played similar decisive role for sound waves, or more generally elastic waves. Then, the idea of coupling light and sound in purposely designed microstructures is now emerging. In this respect, the periodic,(More)
  • 1