Steinar Paulsen

Learn More
AMP-activated protein kinase (AMPK) is activated during muscle contraction in response to the increase in AMP and decrease in phosphocreatine (PCr). Once activated, AMPK has been proposed to phosphorylate a number of targets, resulting in increases in glucose transport, fatty acid oxidation, and gene transcription. Although it has been possible to directly(More)
AMP-activated protein kinase (AMPK) consists of three subunits: alpha, beta, and gamma. Two isoforms exist for the alpha-subunit (alpha(1) and alpha(2)), two for the beta-subunit (beta(1) and beta(2)), and three for the gamma-subunit (gamma(1), gamma(2), and gamma(3)). Although the specific roles of the beta- and gamma-subunits are not well understood, the(More)
UNLABELLED The purpose of this study was to identify the receptor responsible for endocytosis of denatured collagen from blood. The major site of clearance of this material (at least 0.5 g/day in humans) is a receptor on liver sinusoidal endothelial cells (LSECs). We have now identified an 180-kDa endocytic receptor on LSECs, peptide mass fingerprinting of(More)
This study was designed to determine whether the reductions in GLUT-4 seen in 3-day-denervated muscles can be prevented through chemical activation of 5'-AMP-activated protein kinase (AMPK). Muscle AMPK can be chemically activated in rats using subcutaneous injections with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). In this study, the(More)
Twelve adenomatoid tumors were examined immunohistochemically with antibody probes to keratin and factor VIII-related antigen (FVIII-RA). None of the tumors labeled with FVIII-RA antibodies, whereas all but one labeled for keratin. Electron microscopy was done on tissue from paraffin-embedded blocks from all but one of the adenomatoid tumors. Both the(More)
Type II diabetes is caused by a failure of the pancreatic beta-cells to compensate for insulin resistance leading to hyperglycaemia. There is evidence for an essential role of an increased beta-cell apoptosis in type II diabetes. High glucose concentrations induce IL-1beta production in human beta-cells, Fas expression and concomitant apoptosis owing to a(More)
  • 1