Steffi Herrmann

Learn More
Recently, combined carbon and hydrogen isotope fractionation investigations have emerged as a powerful tool for the characterization of reaction mechanisms relevant for the removal of organic pollutants. Here, we applied this approach in order to differentiate benzene biodegradation pathways under oxic and anoxic conditions in laboratory experiments. Carbon(More)
Toluene degradation by several pure and mixed microbial cultures was investigated bytwo-dimensional compound specific isotope analysis (2D-CSIA). For most of the cultures, the respective toluene degradation pathway and toluene attacking enzymatic step was known. The slope of the linear regression for hydrogen (delta delta(2)H) vs. carbon (delta delta(13)C)(More)
We determined stable carbon and hydrogen isotope fractionation factors for anaerobic degradation of xylene isomers by several pure and mixed cultures. All cultures initiated xylene degradation by the addition of fumarate to a methyl moiety, as is known from the literature or verified by the presence of methylbenzylsuccinates as metabolic intermediates.(More)
The flow of carbon under sulfate-reducing conditions within a benzene-mineralizing enrichment culture was analysed using fully labelled [13C6]-benzene. Over 180 days of incubation, 95% of added 13C-benzene was released as 13C-carbon dioxide. DNA extracted from cultures that had degraded different amounts of unlabelled or 13C-labelled benzene was centrifuged(More)
The impact of four electron acceptors on hydrocarbon-induced methanogenesis was studied. Methanogenesis from residual hydrocarbons may enhance the exploitation of oil reservoirs and may improve bioremediation. The conditions to drive the rate-limiting first hydrocarbon-oxidizing steps for the conversion of hydrocarbons into methanogenic substrates are(More)
Microbial reductive dechlorination of trichloroethylene (TCE) in groundwater can be stimulated by adding of electron donors. However, side reactions such as Fe (III) reduction competes with this reaction. This study was set-up to relate the inhibition of microbial TCE dechlorination to the quantity and quality (mineralogy) of Fe (III) in the substrate and(More)
Microcosms filled with different solids (sand, lava, Amberlite XAD-7) were exposed for 67 days in the sulfidic part of a groundwater monitoring well downstream of the source zone of a benzene-contaminated aquifer and subsequently incubated in the laboratory. Benzene was repeatedly degraded in several microcosms accompanied by production of sulfide, leading(More)
Anaerobic reductive dechlorination of hexachlorobenzene (HCB) and three isomers of tetrachlorobenzene (TeCB) (1,2,3,4-, 1,2,3,5- and 1,2,4,5-TeCB) was investigated in microcosms containing chloroaromatic contaminated river sediment. All chlorobenzenes were dechlorinated to dichlorobenzene (DCB) or monochlorobenzene. From the sediment, a methanogenic(More)
The locus D1S80 is a very useful genetic marker system for forensic DNA analysis. It consists of a variable number of tandem repeats (VNTR) and can be analyzed by the polymerase chain reaction (PCR). As accurate data about the distribution of the alleles is one of the most important prerequisites for the application in forensic biology we studied the allele(More)
A sulfate-reducing consortium maintained for several years in the laboratory with m-xylene as sole source of carbon and energy was characterized by terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of PCR-amplified 16S rRNA genes and stable isotope probing of proteins (Protein-SIP). During growth upon m-xylene or methyl-labeled(More)