Learn More
Pain is what the patient says it is. But what about these who cannot utter? Automatic pain monitoring opens up prospects for better treatment, but accurate assessment of pain is challenging due to the subjective nature of pain. To facilitate advances, we contribute a new dataset, the BioVid Heat Pain Database which contains videos and physiological data of(More)
Research in psychotherapy has shown that the frequency of use of specific classes of words (such as terms with emotional valence) in descriptions of scenes of affective relevance is a possible indicator of psychological affective functioning. Using functional magnetic resonance imaging (MRI), we investigated the neural correlates of these linguistic markers(More)
The individual nature of physiological measurements of human affective states makes it very difficult to transfer statistical classifiers from one subject to another. In this work, we propose an approach to incorporate unlabeled data into a supervised classifier training in order to conduct an emotion classification. The key idea of the method is to conduct(More)
The goal of our research is the development of algorithms for automatic estimation of a person's verbal intelligence based on the analysis of transcribed spoken utterances. In this paper we present the corpus of German native speakers' monologues and dialogues about the same topics collected at the University of Ulm, Germany. The monologues were(More)
Affective computing aims at the detection of users' mental states, in particular, emotions and dispositions during human-computer interactions. Detection can be achieved by measuring multimodal signals, namely, speech, facial expressions and/or psychobiology. Over the past years, one major approach was to identify the best features for each signal using(More)