Learn More
We investigated the role in cell morphogenesis and pathogenicity of the Candida albicans GPR1 gene, encoding the G protein-coupled receptor Gpr1. Deletion of C. albicans GPR1 has only minor effects in liquid hypha-inducing media but results in strong defects in the yeast-to-hypha transition on solid hypha-inducing media. Addition of cAMP, expression of a(More)
The temporal and spatial expression of stage-specific genes during morphological development of fungi and higher eukaryotes is controlled by transcription factors. In this study, we report the cloning and functional analysis of the Candida albicans TEC1 (CaTEC1) gene, a new member of the TEA/ATTS family of transcription factors that regulates C. albicans(More)
The human fungal pathogen Candida glabrata is related to Saccharomyces cerevisiae but has developed high resistance against reactive oxygen species. We find that induction of conserved genes encoding antioxidant functions is dependent on the transcription factors CgYap1 and CgSkn7 which cooperate for promoter recognition. Superoxide stress resistance of C.(More)
The individual and synergistic contributions of two transcription factors, EFG1 and CPH1, have been characterized with regard to adhesion to, and invasion of, human epithelia by Candida albicans. For this purpose two in vitro reconstructed tissue models were developed. A multi-layered model of human epidermis was used to simulate superficial infections of(More)
Cell wall dynamics in Candida albicans, the most common fungal pathogen in man, underlie regulatory processes during the yeast-to-hyphae transition. To analyse this regulation at the transcriptional level, we have established a DNA microarray representing genes implicated in cell wall biogenesis. Using these microarrays, we were able to identify YWP1 and(More)
The activation process of vacuolar proteinases in the yeast Saccharomyces cerevisiae via precursor maturation is initiated by the PRA1/PEP4 gene product, proteinase yscA. Chromosomal deletion of the PRA1/PEP4 locus leads to accumulation of inactive pro-proteinases in the vacuole. Nine active-site mutations of proteinase yscA have been constructed in vitro.(More)
The SUN gene family has been defined in Saccharomyces cerevisiae and comprises a fungus-specific family of proteins which show high similarity in their C-terminal domains. Genes of this family are involved in different cellular processes, like DNA replication, aging, mitochondrial biogenesis, and cytokinesis. In Candida albicans the SUN family comprises two(More)
In this work, an enzyme catalyzed detoxification process of lignocellulose hydrolyzates with immobilized laccase from Trametes versicolor was developed and optimized. Further, the immobilized laccase significantly reduced the amount of toxic phenolic compounds in the xylan rich fraction (XRF) by polymerization within 1h. The insoluble products precipitated(More)
In order to quantify autoantibodies in the sera of patients with autoimmune disease, we have created a microarray-based immunoassay that allows the simultaneous analysis of 18 known autoantigens. The microarrays contain serial dilutions of the various antigens, thereby allowing accurate determination of autoantibody titer using minimal amounts of serum. The(More)
Metagenome cloning has become a powerful tool to exploit the biocatalytic potential of microbial communities for the discovery of novel biocatalysts. In a novel variant of direct expression cloning, metagenomic DNA was isolated from compost by a modified direct lysis method, purified by size exclusion chromatography and cloned into an expression vector(More)