Steffen Reiser

  • Citations Per Year
Learn More
A new version release (2.0) of the molecular simulation tool ms2 [S. Deublein, B. Eckl, J. Stoll, S. V. Lishchuk, G. Guevara-Carrion, C. W. Glass, T. Merker, M. Bernreuther, H. Hasse, J. Vrabec, Comput. Phys. Commun. 182 (2011) 2350] is presented. Version 2.0 features a hybrid parallelization based on MPI and OpenMP for molecular dynamics simulation to(More)
A method for determining the activity of the solvent in electrolyte solutions by molecular dynamics simulations is presented. The electrolyte solution is simulated in contact with the pure solvent. Between the two phases, there is a virtual membrane, which is permeable only for the solvent. In the simulation, this is realized by an external field which acts(More)
Massively-parallel molecular dynamics simulation is applied to systems containing electrolytes, vapour-liquid interfaces, and biomolecules in contact with water-oil interfaces. Novel molecular models of alkali halide salts are presented and employed for the simulation of electrolytes in aqueous solution. The enzymatically catalysed hydroxylation of oleic(More)
Thermodynamic properties of aqueous solutions containing alkali and halide ions are determined by molecular simulation. The following ions are studied: Li(+), Na(+), K(+), Rb(+), Cs(+), F(-), Cl(-), Br(-), and I(-). The employed ion force fields consist of one Lennard-Jones (LJ) site and one concentric point charge with a magnitude of ±1 e. The SPC/E model(More)
New Lennard-Jones plus point charge models are developed for alkaline-earth cations. The cation parameters are adjusted to the reduced liquid solution density of aqueous alkaline-earth halide salt solutions at a temperature of 293.15 K and a pressure of 1 bar. This strategy is analogous to the one that was recently used for developing models for alkali and(More)
  • 1