Steffen Lemke

Learn More
The homeobox gene caudal (cad) regulates posterior development in Drosophila. In early embryos, the cad protein (CAD) is expressed in a posterior-to-anterior concentration gradient, which contributes polarity to the developing embryo. The CAD gradient is complementary to and dependent on the anterior pattern organizer Bicoid (BCD), which represses the(More)
The metameric organization of the insect body plan is initiated with the activation of gap genes, a set of transcription-factor-encoding genes that are zygotically expressed in broad and partially overlapping domains along the anteroposterior (AP) axis of the early embryo. The spatial pattern of gap gene expression domains along the AP axis is generally(More)
Most insect embryos develop from a monolayer of cells around the yolk, but only part of this blastoderm forms the embryonic rudiment. Another part forms extra-embryonic serosa. Size and position of the serosa anlage vary between species, and previous work raises the issue of whether such differences co-evolve with the mechanisms that establish(More)
Bone morphogenetic protein (BMP) signaling is an essential factor in dorsoventral patterning of animal embryos but how BMP signaling evolved with fundamental changes in dorsoventral tissue differentiation is unclear. Flies experienced an evolutionary reduction of extra-embryonic tissue types from two (amniotic and serosal tissue) to one (amnionserosal(More)
BACKGROUND In animals, signaling of Bone Morphogenetic Proteins (BMPs) is essential for dorsoventral (DV) patterning of the embryo, but how BMP signaling evolved with changes in embryonic DV differentiation is largely unclear. Based on the extensive knowledge of BMP signaling in Drosophila melanogaster, the morphological diversity of extraembryonic tissues(More)
The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at(More)
Animal development is marked by the repeated reorganization of cells and cell populations, which ultimately determine form and shape of the growing organism. One of the central questions in developmental biology is to understand precisely how cells reorganize, as well as how and to what extent this reorganization is coordinated. While modern microscopes can(More)
To understand how and when developmental traits of the fruit fly Drosophila melanogaster originated during the course of insect evolution, similar traits are functionally studied in variably related satellite species. The experimental toolkit available for relevant fly models typically comprises gene expression and loss as well as gain-of-function analyses.(More)
The hemispheric, bi-layered optic cup forms from an oval optic vesicle during early vertebrate eye development through major morphological transformations. The overall basal surface, facing the developing lens, is increasing, while, at the same time, the space basally occupied by individual cells is decreasing. This cannot be explained by the classical view(More)
  • 1