Steffen Kirchhoff

Learn More
Modeling image similarity for browsing and searching in voluminous image databases is a challenging task of nearly all content-based image retrieval systems. One promising way of defining image similarity consists in applying distance-based similarity measures on compact image representations. Beyond feature histograms and feature signatures , more general(More)
We address the problem of segmenting an image into a previously unknown number of segments from the perspective of graph partitioning. Specifically, we consider minimum multicuts of superpixel affinity graphs in which all affinities between non-adjacent superpixels are negative. We propose a relaxation by Lagrangian decomposition and a constrained set of(More)
We propose a simple yet effective approach to content-based image retrieval: the signature matching distance. While recent approaches to content-based image retrieval utilize the bag-of-visual-words model, where image descriptors are matched through a common visual vocabulary, signature-based approaches use a distance between signatures, i.e. between(More)
We introduce a new family of flexible feature representations for content-based multimedia retrieval: probabilistic feature signatures. While conventional feature histograms and feature signatures aggregate the multimedia objects' feature distributions exhibited in some feature space according to a partitioning, probabilistic feature signatures model these(More)
Retrieving similar images from large image databases is a challenging task for today’s content-based retrieval systems. Aiming at high retrieval performance, these systems frequently capture the user’s notion of similarity through expressive image models and adaptive similarity measures. On the query side, image models can significantly differ in quality(More)
Retrieving similar images from large image databases is a challenging task for today's content-based retrieval systems. Aiming at high retrieval performance, these systems frequently capture the user's notion of similarity through expressive image models and adaptive similarity measures. On the query side, image models can significantly differ in quality(More)
  • 1