Learn More
Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the(More)
BACKGROUND Apoptosis is a form of programmed cell death essential for the maintenance of homeostasis and the removal of potentially damaged cells in multicellular organisms. By binding its cognate membrane receptor, TNF receptor type 1 (TNF-R1), the proinflammatory cytokine Tumor Necrosis Factor (TNF) activates pro-apoptotic signaling via caspase(More)
BACKGROUND Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results(More)
SUMMARY Often competing hypotheses for biochemical networks exist in the form of different mathematical models with unknown parameters. Considering available experimental data, it is then desired to reject model hypotheses that are inconsistent with the data, or to estimate the unknown parameters. However, these tasks are complicated because experimental(More)
The increase in complexity in process control goes along with an increasing need for complete and guaranteed fault diagnosis. In this contribution, we propose a set-based method for complete fault diagnosis for polynomial systems. It is based on a reformulation of the diagnosis problem as a nonlinear feasibility problem, which is subsequently relaxed into a(More)
Analysis and safety considerations of chemical and biological processes frequently require an outer approximation of the set of all feasible steady-states. Nonlinearities, uncertain parameters, and discrete variables complicate the calculation of guaranteed outer bounds. In this paper, the problem of outer-approximating the region of feasible steady-states,(More)
In this note we address the problems of obtaining guaranteed and as good as possible estimates of system parameters for linear discrete–time systems subject to bounded disturbances. Some existing results relevant for the set–membership parameter identification and outer–bounding are first reviewed. Then, a novel method for characterizing the consistent(More)
Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases(More)