Learn More
We present a novel discriminative regression based approach for the Constrained Local Models (CLMs) framework, referred to as the Discriminative Response Map Fitting (DRMF) method, which shows impressive performance in the generic face fitting scenario. The motivation behind this approach is that, unlike the holistic texture based features used in the(More)
The development of facial databases with an abundance of annotated facial data captured under unconstrained 'in-the-wild' conditions have made discriminative facial deformable models the de facto choice for generic facial landmark localization. Even though very good performance for the facial landmark localization has been shown by many recently proposed(More)
In this paper, two supervised methods for enhancing the classification accuracy of the Nonnegative Matrix Factorization (NMF) algorithm are presented. The idea is to extend the NMF algorithm in order to extract features that enforce not only the spatial locality, but also the separability between classes in a discriminant manner. The first method employs(More)
In this paper, two novel methods suitable for blind 3D mesh object watermarking applications are proposed. The first method is robust against 3D rotation, translation, and uniform scaling. The second one is robust against both geometric and mesh simplification attacks. A pseudorandom watermarking signal is cast in the 3D mesh object by deforming its(More)
Automatic facial point detection plays arguably the most important role in face analysis. Several methods have been proposed which reported their results on databases of both constrained and unconstrained conditions. Most of these databases provide annotations with different mark-ups and in some cases the are problems related to the accuracy of the fiducial(More)
We introduce the notion of subspace learning from image gradient orientations for appearance-based object recognition. As image data are typically noisy and noise is substantially different from Gaussian, traditional subspace learning from pixel intensities very often fails to estimate reliably the low-dimensional subspace of a given data population. We(More)
Lucas-Kanade and active appearance models are among the most commonly used methods for image alignment and facial fitting, respectively. They both utilize nonlinear gradient descent, which is usually applied on intensity values. In this paper, we propose the employment of highly descriptive, densely sampled image features for both problems. We show that the(More)
— In this paper we propose a method that exploits 3D motion-based features between frames of 3D facial geometry sequences for dynamic facial expression recognition. An expressive sequence is modeled to contain an onset followed by an apex and an offset. Feature selection methods are applied in order to extract features for each of the onset and offset(More)
We propose a correlation-based approach to parametric object alignment particularly suitable for face analysis applications which require efficiency and robustness against occlusions and illumination changes. Our algorithm registers two images by iteratively maximizing their correlation coefficient using gradient ascent. We compute this correlation(More)
The proposed Active Orientation Models (AOMs) are gen-erative models of facial shape and appearance. Their main differences with the well-known paradigm of Active Appearance Models (AAMs) are (i) they use a different statistical model of appearance, (ii) they are accompanied by a robust algorithm for model fitting and parameter estimation and (iii) and,(More)