Stefano Mezzavilla

  • Citations Per Year
Learn More
Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a(More)
A versatile synthetic procedure to prepare hollow mesoporous carbon spheres (HMCS) is presented here. This approach is based on the deposition of a homogeneous hybrid polymer/silica composite shell on the outer surface of silica spheres through the surfactant-assisted simultaneous polycondensation of silica and polymer precursors in a colloidal suspension.(More)
The efficiency of polymer electrolyte membrane fuel cells is strongly depending on the electrocatalyst performance, that is, its activity and stability. We have designed a catalyst material that combines both, the high activity for the decisive cathodic oxygen reduction reaction associated with nanoscale Pt alloys, and the excellent durability of an(More)
This work introduces a practical and scalable post-synthesis treatment for carbon-supported catalysts designed to achieve complete activation and, if necessary, simultaneously surface dealloying. The core concept behind the method is to control the potential without utilizing any electrochemical equipment, but rather by applying an appropriate gas mixture(More)
  • 1