Learn More
—In this paper, a controller for induction motors is proposed. A continuous feedback is first applied to obtain a discrete-time model in closed form. Then, on the basis of these exact sampled dynamics, a discrete-time controller ensuring speed and flux modulus reference tracking is determined, making use of the sliding mode technique. The resulting(More)
This work deals with a sliding mode control scheme for discrete time nonlinear systems. The control law synthesis problem is subdivided into a finite number of subproblems of lower complexity, which can be solved independently. The sliding mode controller is designed to force the system to track a desired reference and to eliminate unwanted disturbances,(More)
We consider the synthesis of optimal controls for continuous feedback systems by recasting the problem to a hybrid optimal control problem: to synthesize optimal enabling conditions for switching between locations in which the control is constant. An algorithmic solution is obtained by translating the hybrid automaton to a finite automaton using a(More)
— This work studies the combination of active front steering with rear torque vectoring actuators in an integrated controller to guarantee vehicle stability/trajectory tracking. Adaptive feedback technique has been used to design the controller. The feedback linearization is applied to cancel the nonlinearities in the input–output dynamics, leading to(More)
The electroencephalogram (EEG) signal is very important in the diagnosis of epilepsy. Long-term EEG recordings of an epileptic patient contain a huge amount of EEG data. The detection of epileptic activity is, therefore, a very demanding process that requires a detailed analysis of the entire length of the EEG data, usually performed by an expert. This(More)
In this paper, we deal with the observability problem of a class of Hybrid Systems whose output is a timed string on a finite alphabet. We determine under which conditions it is always possible to immediately detect, using the observed output, when the system enters a given discrete state. We illustrate how to construct a Timed Automaton that is an(More)