Stefano Di Carlo

Learn More
A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for(More)
One of the biggest challenges in the study of biological regulatory mechanisms is the integration, americanmodeling, and analysis of the complex interactions which take place in biological networks. Despite post transcriptional regulatory elements (i.e., miRNAs) are widely investigated in current research, their usage and visualization in biological(More)
The use of Bioinformatic tools in routine clinical diagnostics is still facing a number of issues. The more complex and advanced bioinformatic tools become, the more performance is required by the computing platforms. Unfortunately, the cost of parallel computing platforms is usually prohibitive for both public and small private medical practices. This(More)
Many new therapeutic techniques depend not only on the knowledge of the molecules participating in the biological phenomena but also their biochemical function. Advancements in prediction of new proteins are immense if compared with the annotation of functionally unknown proteins. To accelerate the personalized medicine effort, computational techniques(More)
Nowadays, Video-Based Navigation (VBN) is increasingly used in space-applications. The future space-missions will include this approach during the Entry, Descent and Landing (EDL) phase, in order to increase the landing point precision. This paper presents FEMIP: a high performance FPGA-based features extractor and matcher tuned for space applications. It(More)
Undirected gene coexpression networks obtained from experimental expression data coupled with efficient computational procedures are increasingly used to identify potentially relevant biological information (e.g., biomarkers) for a particular disease. However, coexpression networks built from experimental expression data are in general large highly(More)
Thanks to their flexibility, FPGAs are nowadays widely used to implement digital systems' prototypes and, more frequently, their final releases. Reconfiguration traditionally required an external controller to upload contents in the FPGA. Dynamic Partial Reconfiguration (DPR) opens new horizons in FPGAs' applications, providing many new utilization(More)
Gene Regulatory Networks (GRNs) are one of the most investigated biological networks in Systems Biology because their work involves all living activities in the cell. A powerful but simple model of such GRNs are Boolean Networks (BN) that describe interactions among biological compounds in a qualitative manner. One of the most interesting outcomes about(More)
In most developed countries, cardiovascular diseases are among the top causes of death and their development has been shown closely related to aging. In this context, because of their ability to pervasively influence gene networks, miRs have been found as possible key players in the development of cardiac pathologies, suggesting their potential role as(More)
Gene expression is the fundamental control of the structure and functions of the cellular versatility and adaptability of any organisms. The measurement of gene expressions is performed on images generated by optical inspection of microarray devices which allow the simultaneous analysis of thousands of genes. The images produced by these devices are used to(More)