Learn More
Skeletal muscle mass increases during postnatal development through a process of hypertrophy, i.e. enlargement of individual muscle fibers, and a similar process may be induced in adult skeletal muscle in response to contractile activity, such as strength exercise, and specific hormones, such as androgens and β-adrenergic agonists. Muscle hypertrophy occurs(More)
Mammalian skeletal muscles can regenerate following injury and this response is mediated by a specific type of stem cell, the satellite cell. We review here the three main phases of muscle regeneration, including i) the initial inflammatory response and the dual role of macrophages as both scavengers involved in the phagocytosis of necrotic debris and(More)
The intracellular signals that convert fast and slow motor neuron activity into muscle fiber type specific transcriptional programs have only been partially defined. The calcium/calmodulin-dependent phosphatase calcineurin (Cn) has been shown to mediate the transcriptional effects of motor neuron activity, but precisely how 4 distinct muscle fiber types are(More)
Calcineurin (Cn) signaling has been implicated in nerve activity-dependent fiber type specification in skeletal muscle, but the downstream effector pathway has not been established. We have investigated the role of the transcription factor nuclear factor of activated T cells (NFAT), a major target of Cn, by using an in vivo transfection approach in(More)
Muscle wasting occurs in a variety of conditions, including both genetic diseases, such as muscular dystrophies, and acquired disorders, ranging from muscle disuse to cancer cachexia, from heart failure to aging sarcopenia. In most of these conditions, the loss of muscle tissue is not homogeneous, but involves specific muscle groups, for example Duchenne(More)
The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5-20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space(More)
Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4,(More)
PURPOSE Continuous glucose monitoring (CGM) is being increasingly used in clinical practice. The flash glucose monitoring (FGM) and CGM are different systems of interstitial glucose recording. We aimed to determine the agreement between the factory-calibrated FGM FreeStyle Libre (FSL) and the gold-standard CGM Dexcom G4 Platinum (DG4P). METHODS We(More)
Diabetes compromises the bone marrow (BM) microenvironment and reduces the number of circulating CD34(+) cells. Diabetic autonomic neuropathy (DAN) may impact the BM, because the sympathetic nervous system is prominently involved in BM stem cell trafficking. We hypothesize that neuropathy of the BM affects stem cell mobilization and vascular recovery after(More)
Upon activation, neutrophils undergo histone citrullination by protein arginine deiminase (PAD)4, exocytosis of chromatin and enzymes as neutrophil extracellular traps (NETs), and death. In diabetes, neutrophils are primed to release NETs and die by NETosis. Although this process is a defense against infection, NETosis can damage tissue. Therefore, we(More)