Stefano Caffarri

Learn More
We have characterized a xanthophyll binding site, called V1, in the major light harvesting complex of photosystem II, distinct from the three tightly binding sites previously described as L1, L2, and N1. Xanthophyll binding to the V1 site can be preserved upon solubilization of the chloroplast membranes with the mild detergent dodecyl-alpha-d-maltoside,(More)
The biochemical, biophysical, and physiological properties of the PsbS protein were studied in relation to mutations of two symmetry-related, lumen-exposed glutamate residues, Glu-122 and Glu-226. These two glutamates are targets for protonation during lumen acidification in excess light. Mutation of PsbS did not affect xanthophyll cycle pigment conversion(More)
Photosystem II (PSII) is a large multiprotein complex, which catalyses water splitting and plastoquinone reduction necessary to transform sunlight into chemical energy. Detailed functional and structural studies of the complex from higher plants have been hampered by the impossibility to purify it to homogeneity. In this work, homogeneous preparations(More)
Photoprotection of the chloroplast is an important component of abiotic stress resistance in plants. Carotenoids have a central role in photoprotection. We review here the recent evidence, derived mainly from in vitro reconstitution of recombinant Lhc proteins with different carotenoids and from carotenoid biosynthesis mutants, for the existence of(More)
The major antenna complex of higher-plant photosynthesis, LHCII, is composed by the products of three genes, namely, Lhcb1-2-3. In this paper, the biochemical and spectroscopic properties of each of the three gene products were investigated. The three complexes were obtained by overexpression of the apoproteins in bacteria and refolding in vitro with(More)
State transitions are an important photosynthetic short-term response that allows energy distribution balancing between photosystems I (PSI) and II (PSII). In plants when PSII is preferentially excited compared with PSI (State II), part of the major light-harvesting complex LHCII migrates to PSI to form a PSI-LHCII supercomplex. So far, little is known(More)
BACKGROUND In eukaryotes the photosynthetic antenna system is composed of subunits encoded by the light harvesting complex (Lhc) multigene family. These proteins play a key role in photosynthesis and are involved in both light harvesting and photoprotection. The moss Physcomitrella patens is a member of a lineage that diverged from seed plants early after(More)
An efficient protocol of transformation and selection of transgenic lines of Micro-tom, a widespread model cultivar for tomato, is reported. RNA interference silencing efficiency and stability have been investigated and correlated with the number of insertions. Given its small size and ease of cultivation, the tomato (Solanum lycopersicon) cultivar(More)
To avoid photodamage, photosynthetic organisms have developed mechanisms to evade or dissipate excess energy. Lumen overacidification caused by light-induced electron transport triggers quenching of excited chlorophylls and dissipation of excess energy into heat. In higher plants participation of the PsbS protein as the sensor of low lumenal pH was clearly(More)
In higher plants many different genes encode Lhcb proteins that belong to a highly conserved protein family. Evolutionary conservation of this genetic redundancy suggests that individual gene products play different roles in light harvesting and photoprotection depending on environmental conditions. We have tested the hypothesis that expression/accumulation(More)