Stefano Baronti

Learn More
This paper compares two general and formal solutions to the problem of fusion of multispectral images with high-resolution panchromatic observations. The former exploits the undecimated discrete wavelet transform, which is an octave bandpass representation achieved from a conventional discrete wavelet transform by omitting all decimators and upsampling the(More)
This paper introduces a novel approach for evaluating the quality of pansharpened multispectral (MS) imagery without resorting to reference originals. Hence, evaluations are feasible at the highest spatial resolution of the panchromatic (PAN) sensor. Wang and Bovik’s image quality index (QI) provides a statistical similarity measurement between two(More)
This article aims at explaining the ARSIS concept. By fusing two sets of images A and B, one with a high spatial resolution, the other with a low spatial resolution and different spectral bands, the ARSIS concept permits to synthesise the dataset B at the resolution of A that is as close as possible to reality. It is based on the assumption that the missing(More)
This paper presents an image fusion method suitable for pan-sharpening of multispectral (MS) bands, based on nonseparable multiresolution analysis (MRA). The low-resolution MS bands are resampled to the fine scale of the panchromatic (Pan) image and sharpened by injecting highpass directional details extracted from the high-resolution Pan image by means of(More)
In this work, near-lossless compression yielding strictly bounded reconstruction error is proposed for high-quality compression of remote sensing images. A classified causal DPCM scheme is presented for optical data, either multi/hyperspectral three-dimensional (3-D) or panchromatic two-dimensional (2-D) observations. It is based on a classified(More)