Stefanie Marx

Learn More
ymf39 is a conserved hypothetical protein-coding gene found in mitochondrial genomes of land plants and certain protists. We speculated earlier, based on a weak sequence similarity between Ymf39 from a green alga and the atpF gene product from Bradyrhizobium, that ymf39 might code for subunit b of mitochondrial F(0)F(1)-ATP synthase. To test this(More)
Following polymerase chain reaction, a fragment of about 800 bp was amplified from genomic Mougeotia DNA using oligonucleotides directed to conserved regions of known phytochrome genes. The nucleotide sequence points to a different exon/intron structure in the neighborhood of the chromophore attachment site of this Mougeotia phytochrome gene, as compared to(More)
We have sequenced cDNA and genomic clones coding for phytochrome of the fern Selaginella. On the amino acid level, this phytochrome shares sequence homologies with phytochromes of higher plants which range between 62 (phytochrome B of Arabidopsis) and 55 (56)% [phytochrome C of Arabidopsis (Avena)]. Introns in the Selaginella gene are short and occupy(More)
Phytochrome and bacterial sensor proteins are related by functional and structural homologies. They are both sensors of environmental stimuli and share structural homologies which comprise a domain of about 250 amino acids (about 28 kg.mol-1). This domain is C-terminal in phytochromes and in several bacterial sensor proteins. In both groups of sensors this(More)
In eubacteria, the respiratory bc(1) complex (complex III) consists of three or four different subunits, whereas that of mitochondria, which have descended from an alpha-proteobacterial endosymbiont, contains about seven additional subunits. To understand better how mitochondrial protein complexes evolved from their simpler bacterial predecessors, we(More)
  • 1